计算机科学
卷积神经网络
交通标志识别
人工智能
深度学习
分类
任务(项目管理)
机器学习
鉴定(生物学)
人工神经网络
循环神经网络
智能交通系统
领域(数学)
交通标志
符号(数学)
工程类
数学分析
植物
土木工程
数学
系统工程
纯数学
生物
作者
Md. Saiful Islam,Arafatun Noor Orno,Mohammad Arifuzzaman,Md.Tamimur Rahman
标识
DOI:10.1109/icict4sd59951.2023.10303408
摘要
The recognition and classification of traffic signs hold significant significance within intelligent transportation systems and autonomous vehicles. This task entails the precise and real-time identification and categorization of diverse traffic signs through the There are many different types of neural networks that can be used for traffic sign recognition and classification, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep belief networks (DBNs). The choice of which network to use depends on the specific requirements and constraints of the task. The field continues to evolve and advance, with new techniques and approaches being developed to address the challenges and limitations of this task [1].
科研通智能强力驱动
Strongly Powered by AbleSci AI