已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimating the stiffness of kiwifruit based on the fusion of instantaneous tactile sensor data and machine learning schemes

成熟度 人工智能 刚度 支持向量机 传感器融合 触觉传感器 软传感器 人工神经网络 非线性系统 工程类 过程(计算) 计算机科学 机器学习 机器人 结构工程 成熟 化学 物理 食品科学 量子力学 操作系统
作者
Frank Efe Erukainure,Victor Parque,Mohsen A. Hassan,Ahmed M. R. FathEl-Bab
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:201: 107289-107289 被引量:11
标识
DOI:10.1016/j.compag.2022.107289
摘要

Measuring the ripeness of fruits is one of the critical factors in achieving real-time quality control and sorting of fruit by growers and postharvest managers. However, recent tactile sensing approaches for fruit ripeness detection have suffered setbacks due to: (1) the nonlinear relationship between the sensor output and the true stiffness of fruits; and (2) the angle of contact, referred to as the inclination angle, between the sensor and the outer surface of the fruit. In this paper, we propose a non-destructive tactile sensing approach for estimating the stiffness of fruits, using kiwifruit as a case study. Our sensor configuration is based on a three-probe piezoresistive cantilever beam, allowing us to obtain relatively stable sensor outputs that are independent of the inclination angle of the fruit surface. Our stiffness estimation approach is based on the combination of instantaneous sensor outputs with 63 regression-based machine learning models comprising of neural networks, Gaussian process, support vector machines, and decision trees. For experiments, we used several kiwifruit samples at diverse ripeness levels. The extracted sensor data was used to train the learning models over a 10-fold cross-validation technique, allowing us to find the nonlinear relationships between the instantaneous sensor outputs and the ground truth stiffness of the fruit. Our pairwise statistical comparison by the Wilcoxon test at 5% significance revealed the competitive performance frontiers of our approach for stiffness prediction; the Gaussian process kernel functions and the binary trees outperformed other models at a mean squared error (MSE) of 1.0 and 2×10−23, respectively. Most neural network models achieved competitive learning performance at MSE less than 10−5 and the utmost performance being a pyramidal class of feed-forward neural architectures. The results portray the potential of achieving accurate ripeness estimation of fruit using intelligent tactile sensors with fast machine learning schemes across the supply chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
一枝鸭发布了新的文献求助10
1秒前
Xx完成签到,获得积分10
3秒前
扶摇完成签到 ,获得积分10
3秒前
龚幻梦发布了新的文献求助30
4秒前
zho驳回了李爱国应助
4秒前
hhhhhhh发布了新的文献求助10
5秒前
7秒前
势临完成签到 ,获得积分10
8秒前
cwb关闭了cwb文献求助
9秒前
dg_fisher发布了新的文献求助10
10秒前
科研通AI5应助陶醉海燕采纳,获得10
17秒前
慕青应助帅气的帆布鞋采纳,获得10
17秒前
dg_fisher完成签到,获得积分20
19秒前
gwrlg完成签到,获得积分10
20秒前
20秒前
ADCIST发布了新的文献求助10
24秒前
风趣问雁完成签到 ,获得积分10
24秒前
25秒前
liusui完成签到 ,获得积分10
27秒前
28秒前
香蕉觅云应助科研通管家采纳,获得10
31秒前
酷波er应助科研通管家采纳,获得10
31秒前
852应助科研通管家采纳,获得10
31秒前
suliang应助科研通管家采纳,获得10
31秒前
桐桐应助科研通管家采纳,获得50
31秒前
coolkid应助科研通管家采纳,获得10
31秒前
小卡应助科研通管家采纳,获得10
31秒前
suliang应助科研通管家采纳,获得10
31秒前
汉堡包应助科研通管家采纳,获得10
31秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
31秒前
orixero应助Ting采纳,获得10
32秒前
35秒前
hugeng发布了新的文献求助10
39秒前
上官若男应助快乐的篮球采纳,获得10
40秒前
42秒前
43秒前
Ting发布了新的文献求助10
45秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845361
求助须知:如何正确求助?哪些是违规求助? 3387578
关于积分的说明 10550072
捐赠科研通 3108321
什么是DOI,文献DOI怎么找? 1712538
邀请新用户注册赠送积分活动 824461
科研通“疑难数据库(出版商)”最低求助积分说明 774807