Additive-Engineered CsPbBr3-Based Perovskite Memristors for Neuromorphic Computing and Associative Learning Applications

材料科学 纳米技术
作者
Zhiqiang Xie,Jianchang Wu,Jingjing Tian,Chaohui Li,Difei Zhang,Lijun Chen,Maria Antonietta Loi,Andres Osvet,Christoph J. Brabec
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (38): 53704-53715
标识
DOI:10.1021/acsami.5c10525
摘要

Perovskite memristors have emerged as promising candidates for neuromorphic computing due to their simple fabrication process and mixed ionic and electronic properties. Among them, all-inorganic CsPbBr3 perovskites have garnered significant interest due to their excellent stability. However, the low solubility of cesium bromide (CsBr) in most common solvents poses a major challenge in fabricating high-quality, pinhole-free CsPbBr3 films for memory device applications using a convenient one-step solution method. In this work, a facile one-step spin-coating approach was employed to fabricate CsPbBr3-based memristors, incorporating a carbohydrazide (CBH) additive into the perovskite precursor to enhance device performance. The modified device exhibited an improved ON/OFF ratio, enhanced endurance, and longer retention time. Furthermore, it successfully emulated key synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, long-term potentiation/depression, and learning-forgetting-relearning behaviors, effectively mimicking biological synapses. Additionally, an associative learning experiment inspired by Pavlov's dog experiment was conducted, demonstrating memory formation and extinction under optical and electrical stimuli. The fabricated perovskite memristor was further evaluated in a convolutional neural network for Fashion MNIST classification, achieving a high recognition accuracy of 89.07%, confirming its potential for neuromorphic computing applications. This study highlights the effectiveness of additive engineering as a strategy for developing high-performance perovskite-based neuromorphic electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyf567完成签到,获得积分10
刚刚
无花果应助求求科研采纳,获得10
刚刚
迪克大完成签到,获得积分10
1秒前
springlover完成签到,获得积分0
1秒前
1秒前
眯眯眼完成签到 ,获得积分10
1秒前
MZZ完成签到,获得积分10
1秒前
小丑完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
坦率耳机完成签到,获得积分0
3秒前
Ava应助Han采纳,获得10
3秒前
3秒前
葛一豪发布了新的文献求助10
3秒前
3秒前
漠雨寒灯发布了新的文献求助10
3秒前
一心完成签到,获得积分10
3秒前
hjhhjh完成签到,获得积分10
4秒前
4秒前
smy完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
andy发布了新的文献求助10
4秒前
hy发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
orixero应助学习中采纳,获得10
5秒前
七七完成签到,获得积分20
5秒前
6秒前
zhen完成签到,获得积分10
6秒前
烛黎完成签到,获得积分10
6秒前
xiaotiyang完成签到,获得积分10
6秒前
激动的乐安完成签到,获得积分10
6秒前
7秒前
陶军辉发布了新的文献求助10
7秒前
doudou发布了新的文献求助10
7秒前
lean发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433563
求助须知:如何正确求助?哪些是违规求助? 4545956
关于积分的说明 14199843
捐赠科研通 4465748
什么是DOI,文献DOI怎么找? 2447658
邀请新用户注册赠送积分活动 1438788
关于科研通互助平台的介绍 1415767