Assimilation of ASCAT Soil Moisture and SMAP Brightness Temperature Observations into the NASA GEOS Land Data Assimilation System

数据同化 环境科学 气候学 亮度温度 气象学 大气科学 亮度 遥感 地质学 地理 光学 物理
作者
A. M. Fox,Rolf H. Reichle,Qing Liu
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
标识
DOI:10.1175/jhm-d-24-0139.1
摘要

Abstract Soil moisture (SM) observations from the Advanced Scatterometer (ASCAT) satellite radar (5.3 GHz) and brightness temperature (Tb) observations from the Soil Moisture Active Passive (SMAP) satellite radiometer (1.4 GHz) are assimilated in the NASA Goddard Earth Observing System (GEOS) land data assimilation system, both separately and together (jointly) from April 2015 to March 2021. The resulting SM estimates are validated using in-situ measurements, independent satellite observations, and data assimilation diagnostics. Assimilating only ASCAT SM (ASC_DA) universally improves the SM analysis estimates relative to a model-only control simulation (CNTL). For example, the anomaly time series correlation coefficient (anomR) vs. in-situ surface SM increases from 0.55 for CNTL to 0.58 for ASC_DA, and the misfit between SMAP Tb observations (not assimilated) and corresponding (3-hour) background forecasts decreases by 4.9%. Assimilating only SMAP Tb (SMP_DA) yields greater improvements in SM analysis estimates than does ASC_DA. For example, anomR vs. in-situ surface SM increases to 0.68, although the misfit between ASCAT SM observations (not assimilated) and corresponding (3-hour) background forecasts decreases by only 1.5%. Jointly assimilating multi-sensor (ASCAT and SMAP) observations (MLT_DA) yields overall SM estimation skill similar to that of SMP_DA. Data assimilation diagnostics suggest that MLT_DA background forecasts are generally improved vs. those of CNTL, but by less than seen in SMP_DA, implying that information from the ASCAT and SMAP observations does not always agree. However, since ASC_DA clearly improves SM estimates, multi-sensor assimilation is nevertheless beneficial by increasing system robustness and extending the period when SM observations are available for assimilation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
abjz发布了新的文献求助10
2秒前
2秒前
2秒前
乐乐应助空白采纳,获得10
3秒前
3秒前
顾矜应助初见采纳,获得10
4秒前
耶大王关注了科研通微信公众号
4秒前
隐形曼青应助石化的海报采纳,获得10
4秒前
机灵凌雪完成签到 ,获得积分10
4秒前
123完成签到,获得积分10
5秒前
生动的安雁完成签到,获得积分10
5秒前
5秒前
5秒前
ZR14124发布了新的文献求助10
6秒前
8秒前
充电宝应助含糊的钢笔采纳,获得10
8秒前
稳重的含灵完成签到,获得积分10
8秒前
司空懿轩完成签到,获得积分10
9秒前
10秒前
11秒前
lnyi完成签到,获得积分20
11秒前
笑笑完成签到,获得积分10
11秒前
潇潇发布了新的文献求助10
12秒前
12秒前
聪明无施完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
脑洞疼应助老婶子采纳,获得10
14秒前
不舍天真完成签到,获得积分10
14秒前
15秒前
15秒前
迪歪歪发布了新的文献求助10
15秒前
憨憨发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713080
求助须知:如何正确求助?哪些是违规求助? 5213364
关于积分的说明 15269379
捐赠科研通 4864862
什么是DOI,文献DOI怎么找? 2611713
邀请新用户注册赠送积分活动 1561997
关于科研通互助平台的介绍 1519171