A Dual-Population-Based Co-Evolutionary Algorithm for Capacitated Electric Vehicle Routing Problems

车辆路径问题 数学优化 人口 计算机科学 布线(电子设计自动化) 电动汽车 进化算法 遗传算法 蚁群优化算法 蚁群 数学 计算机网络 人口学 社会学 功率(物理) 物理 量子力学
作者
Chao Wang,Qin Fang,Xiaoshu Xiang,Hao Jiang,Xingyi Zhang
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:10 (2): 2663-2676 被引量:10
标识
DOI:10.1109/tte.2023.3294588
摘要

The capacitated electric vehicle routing problem is a challenging non-deterministic polynomial hard (NP-hard) problem consisting of two interdependent sub-problems, the routing optimization problem and the charging decision problem. The routing optimization for electric vehicles with limited driving range is dependent on the available charging stations, while the charging decision is based on the charging demand that is estimated on the fixed route in return. Taking this coupling relationship into consideration, this paper proposes a dual-population based co-evolutionary algorithm that uses two evolution populations to collaboratively optimize these two sub-problems. In routing population, the charging station is regarded as a kind of customer with no demand, and an improved ant colony optimization algorithm is designed to generate routes that involve the position information of charging stations. In charging population, a binary genetic algorithm is used to generate a population of charging schemes whose qualities are evaluated based on the best ant obtained from the routing population, and then the resultant solution by inserting the best charging scheme is used to update the pheromone for the routing generation. Through the information interaction during the evolution, these two populations collaboratively search for the optimal solution of the problem. Experimental results demonstrate that the proposed algorithm can be able to avoid falling into the local optimum and has a reduction of about 4% in route distance averaged over two test suites. Additionally, it also has a high computational efficiency, which is faster than the advanced ant colony optimization method by about 2 times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助maomao采纳,获得10
1秒前
温馨家园完成签到 ,获得积分10
1秒前
4秒前
慕青应助不攻自破采纳,获得10
5秒前
潇洒的小鸽子完成签到 ,获得积分0
5秒前
媌哈哈关注了科研通微信公众号
6秒前
泯珉发布了新的文献求助10
9秒前
HLJemm应助科研通管家采纳,获得10
10秒前
小盛完成签到,获得积分10
10秒前
不想干活应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得50
11秒前
情怀应助科研通管家采纳,获得10
11秒前
Thea应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
kermitds完成签到 ,获得积分10
12秒前
ctc发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
ED应助乐平KYXK采纳,获得10
14秒前
14秒前
小佳完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
英姑应助gougoudy采纳,获得10
18秒前
ZMH完成签到,获得积分10
19秒前
19秒前
yjwang应助SIDEsss采纳,获得10
19秒前
19秒前
柴胡发布了新的文献求助10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171461
求助须知:如何正确求助?哪些是违规求助? 3706922
关于积分的说明 11695769
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860814
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754