Effect of battery material and operation on dynamic performance of a vanadium redox flow battery under electrolyte imbalance conditions

流动电池 电池(电) 电解质 氧化还原 材料科学 碱性电池 流量(数学) 汽车蓄电池 储能 电气工程 无机化学 化学 冶金 工程类 电极 机械 热力学 物理 功率(物理) 物理化学
作者
Prathak Jienkulsawad,Tossaporn Jirabovornwisut,Yong-Song Chen,Amornchai Arpornwichanop
出处
期刊:Energy [Elsevier]
卷期号:268: 126708-126708 被引量:4
标识
DOI:10.1016/j.energy.2023.126708
摘要

An electrolyte imbalance in a vanadium redox flow battery (VRFB) is a significant problem that can degrade the performance of VRFB during a long-term operation. The systematic analysis of a VRFB is, therefore, performed to examine the battery performance and capacity degradation caused by an electrolyte imbalance through the use of different electrode materials and membranes, which consider carbon felt structures and their treatment, and cation- and anion-exchange types of membrane. A dynamic model of the VRFB explains the gas evolutions and self-discharge side reactions coupled with the mass balance of the vanadium and proton ions. Investigation of the VRFB performance reveals that the rate of capacity loss resulting from the electrolyte imbalance considerably depends on the material and operating conditions. The variation of the vanadium ions during long-term operation depends on the gassing and self-discharge side reactions. The VRFB using Type 3 electrodes and an AMV membrane provides the highest energy efficiency. The battery operating time is considered a key factor in managing the vanadium variation caused by self-discharge reactions. Current density, temperature, and total vanadium concentration are found to affect the battery capacity degradation rate. A high-capacity degradation rate is observed under low current density, high temperature, and high total vanadium concentration conditions. However, changes in the electrolyte flow rate do not improve the battery capacity during long-term operation because the state of charge of the VRFB decreases due to the electrolyte imbalance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vincent完成签到,获得积分10
刚刚
大个应助自行设置采纳,获得10
1秒前
2秒前
Vincent发布了新的文献求助10
4秒前
cctv18应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
wanci应助收集快乐采纳,获得10
6秒前
7秒前
9秒前
852应助南城雨落采纳,获得10
9秒前
10秒前
星辰大海应助CAIJING采纳,获得10
10秒前
柳墨白发布了新的文献求助10
12秒前
xx发布了新的文献求助10
12秒前
larry发布了新的文献求助10
14秒前
15秒前
16秒前
金钰贝儿完成签到,获得积分10
17秒前
搜集达人应助@你。采纳,获得10
17秒前
老鼠咕噜应助DNN采纳,获得10
18秒前
搜集达人应助sky采纳,获得10
18秒前
小二郎应助chloe采纳,获得10
20秒前
20秒前
TONG发布了新的文献求助10
22秒前
852应助大橙子采纳,获得20
22秒前
benben应助小点点采纳,获得10
23秒前
CipherSage应助zyf采纳,获得30
23秒前
24秒前
笨笨发布了新的文献求助10
24秒前
25秒前
小马甲应助王苗苗采纳,获得10
25秒前
香蕉觅云应助111采纳,获得10
26秒前
xx完成签到,获得积分20
26秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2394617
求助须知:如何正确求助?哪些是违规求助? 2098195
关于积分的说明 5287594
捐赠科研通 1825696
什么是DOI,文献DOI怎么找? 910296
版权声明 559972
科研通“疑难数据库(出版商)”最低求助积分说明 486511