A Computational and Experimental Analysis of Vortex Shedding from Complex Turning Vanes

旋涡脱落 唤醒 机械 雷诺数 粒子图像测速 翼型 涡流 计算流体力学 尾流紊流 物理 大涡模拟 分离涡模拟 后缘 涡度 航空航天工程 声学 雷诺平均Navier-Stokes方程 工程类 湍流
作者
Andrew P. Hayden,Cole Hefner,John Gillespie,Alexandrina Untăroiu,K. Todd Lowe
标识
DOI:10.2514/6.2023-0049
摘要

View Video Presentation: https://doi.org/10.2514/6.2023-0049.vid This paper presents a comprehensive analysis of vortex shedding from two sets of complex turning vanes. The vane packs, known as StreamVanes, are swirl distortion generating devices capable of reproducing distorted secondary flow profiles to a high degree of accuracy. Due to manufacturing and structural durability requirements, the turning vanes within StreamVanes consist of airfoil profiles with thick trailing edges. This, in turn, introduces fixed separation points at the pressure and suction sides of the trailing edge which inherently produce shear layer instabilities and vortex shedding within the wake. The objective of this research was to predict and measure the wake structures and vortex shedding frequencies produced by different vane parameters within two unique StreamVane models. A commercial, unsteady Reynolds-Averaged Navier-Stokes (URANS) code was used to acquire wake-flow visualizations and frequency data generated by both vane packs. Time-resolved particle image velocimetry (TR-PIV) was conducted to measure both aspects of vortex shedding and quantify the differences from the computational fluid dynamics (CFD) predictions. A two-point space-time correlation method was developed to accurately extract the measured shedding frequencies from high-speed wakes that exceeded the Nyquist limit. It was found that the URANS code was capable of qualitatively capturing coherent wake structures and three-dimensional eddy distortions within the vane wakes. The TR-PIV measurements revealed differences from the URANS predicted non-dimensional shedding frequencies within the range of 0.05 - 14%. The presented results provide insight into the accuracy of URANS codes in predicting vortex shedding features for a combination of three-dimensional flows, blunt trailing edge airfoils, and complex turning vanes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈嘻嘻完成签到,获得积分10
刚刚
WEN发布了新的文献求助10
1秒前
削皮柚子发布了新的文献求助10
1秒前
丫丫完成签到,获得积分10
2秒前
YYY完成签到,获得积分10
2秒前
不可发布了新的文献求助10
4秒前
海湾电报完成签到,获得积分10
5秒前
李爱国应助WEN采纳,获得10
5秒前
6秒前
7秒前
爱笑的不评完成签到,获得积分10
10秒前
11秒前
babao发布了新的文献求助10
11秒前
丘比特应助白桃枝采纳,获得10
11秒前
14秒前
淡淡书竹发布了新的文献求助10
14秒前
酷波er应助xl采纳,获得10
15秒前
16秒前
丘比特应助东拉西扯采纳,获得10
16秒前
浮光完成签到,获得积分10
17秒前
8R60d8应助不可采纳,获得10
18秒前
Orange应助yyxxyy采纳,获得10
19秒前
19秒前
19秒前
20秒前
mervin发布了新的文献求助30
20秒前
包子发布了新的文献求助10
21秒前
Owen应助魂殇采纳,获得20
21秒前
高兴中心完成签到,获得积分10
22秒前
23秒前
可爱的函函应助迅速念云采纳,获得10
23秒前
陌上疏完成签到,获得积分10
23秒前
babaoriley1发布了新的文献求助10
24秒前
岁月完成签到,获得积分10
24秒前
25秒前
xl发布了新的文献求助10
26秒前
youxiaotong发布了新的文献求助10
26秒前
钰宁完成签到 ,获得积分10
27秒前
慕青应助包子采纳,获得10
30秒前
hhh发布了新的文献求助10
30秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828224
求助须知:如何正确求助?哪些是违规求助? 3370531
关于积分的说明 10463777
捐赠科研通 3090448
什么是DOI,文献DOI怎么找? 1700414
邀请新用户注册赠送积分活动 817833
科研通“疑难数据库(出版商)”最低求助积分说明 770486