Self-enhanced enthalpy heat pump system based on the performance of CO2 whole-vehicle thermal management below −20 °C

热泵 材料科学 电子设备和系统的热管理 热的 热力学 机械工程 环境科学 工程类 热交换器 物理
作者
Kun-Ru Wang,Rui Zhao,Hua Chen,Wen-Long Cheng
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:249: 123425-123425 被引量:8
标识
DOI:10.1016/j.applthermaleng.2024.123425
摘要

The automotive industry has begun to shift to new energy electric vehicles due to the challenges of oil and environmental resources. However, heating in low-temperature environments results in poor endurance of electric vehicles in winter, which has always hindered the development of electric vehicles. The main reason is that the commonly used heating method, Positive Temperature Coefficient Heating (PTC), has a lower efficiency, while traditional heat pumps lack heat absorption and heat exchanger frosting, resulting in heat pumps not being able to be used well in low-temperature environments. This article proposes a transcritical CO2 self-enhanced enthalpy heat pump system suitable for low-temperature environmental applications to address this issue. The system can be divided into self-enhanced enthalpy heat pump (SEHP) mode, self-enhanced enthalpy waste heat hybrid heat pump (SEWHHP) mode, and waste heat recovery heat pump (WHHP) mode based on no waste heat, low waste heat to high waste heat. A mathematical analysis was conducted on the operating characteristics of CO2 in three modes using the AMESIM platform. The heat from the condenser in the system can be distributed by the cooling water circuit to the cabin and evaporator for heat absorption, and the waste heat from the battery motor can also be well utilized by the evaporator. This article focuses on analyzing the efficiency of three modes under different ambient temperatures, target temperatures, and residual heat. When the ambient temperature is −20℃, the mode switches from the SEHP to the SEWHHP mode and then to the WHHP mode, with the efficiency increasing from 0.89 to 1.31 and 1.77, respectively. COP increases with increasing ambient temperature in all modes, with the WHHP mode increasing from 1.46 to 1.67 when the ambient temperature increases from 50 °C to 20 °C. The efficiency is much greater than that of PTC, and this study provides new ideas for the thermal management of electric vehicles in low-temperature environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
复苏应助dalian采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
spc68应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得20
刚刚
无花果应助科研通管家采纳,获得10
刚刚
Twonej应助科研通管家采纳,获得30
刚刚
SMZ应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
EMC应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
spc68应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
专注的皮卡丘完成签到,获得积分10
1秒前
1秒前
1秒前
冷静的伊完成签到,获得积分10
2秒前
乐乐应助拼搏的白玉采纳,获得10
2秒前
科研通AI6应助Sharon采纳,获得10
2秒前
Sere发布了新的文献求助10
2秒前
充电宝应助孟辰凡采纳,获得10
2秒前
小鱼发布了新的文献求助10
3秒前
3秒前
X_X发布了新的文献求助10
3秒前
3秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661318
求助须知:如何正确求助?哪些是违规求助? 4838264
关于积分的说明 15095308
捐赠科研通 4820082
什么是DOI,文献DOI怎么找? 2579723
邀请新用户注册赠送积分活动 1534013
关于科研通互助平台的介绍 1492767