已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatio-temporal features based deep learning model for depression detection using two electrodes

深度学习 人工智能 计算机科学 萧条(经济学) 模式识别(心理学) 心理学 宏观经济学 经济
作者
Shubham Choudhary,Manish Kumar Bajpai,Kusum Kumari Bharti
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086015-086015 被引量:2
标识
DOI:10.1088/1361-6501/ad4dc0
摘要

Abstract Deep learning has made significant contributions to the medical field and has shown great potential in various applications. Its ability to process vast amounts of data and extraction of patterns has enabled breakthroughs in medical research, diagnosis and treatment. The application of deep learning plays a vital role in depression detection. Depression is a neurological disorder characterized by persistent feelings of sadness, hopelessness and a lack of interest. The prevalence of depression is a significant factor contributing to the rise in suicide cases on a global scale. The electroencephalogram (EEG) is a non-invasive technique used to detect depression. It records brain activity using multiple electrodes. The number of EEG electrodes used for measurement directly affects the instrumentation and measurement complexity of the experiment. The present manuscript proposes a deep learning model for depression detection, focusing on two electrodes named FP1 and FP2. The purpose of employing two electrodes is to enhance the system’s portability while reducing data acquisition time and system cost. EEG is spatio-temporal data and possesses inherent spatial and temporal features. The present manuscript proposes a methodology for extracting temporal and spatial features. The temporal feature extraction module extracts temporal features in the time domain and the spatial module extracts spatial features in the spatial domain. This manuscript presents a study on the applicability of two electrodes for depression detection. This research can enhance accessibility, user-friendliness and easier data collection and analysis. The proposed deep learning model is evaluated on two benchmark datasets. It achieves 93.41% classification accuracy, 92.54% precision, 93.23% recall, 93.06% F1 score and 97.80% area under the curve (AUC) for Hospital University Sains Malaysia dataset and for Multi-modal Open Dataset for Mental-disorder Analysis dataset it achieves 79.40% accuracy, 81.18% precision, 67.73% recall, 73.80% F1 score and 85.66% AUC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助劝儿采纳,获得10
2秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
4秒前
LS完成签到,获得积分10
5秒前
yalan完成签到,获得积分10
6秒前
9秒前
寒冷的她完成签到 ,获得积分10
9秒前
轻松含双关注了科研通微信公众号
9秒前
哭泣的擎汉完成签到,获得积分10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
小白应助科研通管家采纳,获得20
11秒前
11秒前
传奇3应助科研通管家采纳,获得30
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
若雨凌风应助科研通管家采纳,获得20
11秒前
11秒前
17秒前
17秒前
18秒前
研友_xnEOX8完成签到,获得积分10
20秒前
棕熊熊发布了新的文献求助10
20秒前
21秒前
22秒前
23秒前
发文章发布了新的文献求助10
23秒前
九月发布了新的文献求助20
24秒前
24秒前
研友_xnEOX8发布了新的文献求助40
24秒前
香蕉觅云应助QQ采纳,获得10
27秒前
甜蜜花发布了新的文献求助20
27秒前
研狗发布了新的文献求助10
29秒前
haixia发布了新的文献求助10
29秒前
31秒前
JiangCYbbb完成签到,获得积分10
33秒前
情怀应助maozhehai29999采纳,获得10
33秒前
Menaly完成签到 ,获得积分10
35秒前
38秒前
在水一方应助haixia采纳,获得10
38秒前
李爱国应助棕熊熊采纳,获得10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815339
求助须知:如何正确求助?哪些是违规求助? 3359155
关于积分的说明 10400562
捐赠科研通 3076791
什么是DOI,文献DOI怎么找? 1690017
邀请新用户注册赠送积分活动 813557
科研通“疑难数据库(出版商)”最低求助积分说明 767674