Near-infrared spectral expansion method based on active semi-supervised regression

化学 更安全的 试验装置 支持向量机 偏最小二乘回归 回归分析 回归 稳健性(进化) 样品(材料) 线性回归 集合(抽象数据类型) 计算机科学 人工智能 数据挖掘 机器学习 统计 生物化学 基因 色谱法 程序设计语言 数学
作者
Yican Huang,Zhengguang Chen,Jinming Liu
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1317: 342890-342890 被引量:1
标识
DOI:10.1016/j.aca.2024.342890
摘要

The utilization of near-infrared (NIR) spectroscopy, in conjunction with chemometric techniques, has been widely used in a variety of sectors, including agricultural production and pharmaceutical production. Nevertheless, the laborious and arduous procedure of gathering samples and evaluating their physicochemical properties leads to relatively limited training set sizes for modeling. This problem severely limits the optimization and practical application of NIR spectrum analysis models. The Safer Active Semi-Supervised Sample Augmentation Learning Model (Safer-AS3A) proposed in this paper tries to address the problem by incorporating active learning (AL) and semi-supervised learning (SSL) techniques. Experiments were conducted on two sets of publicly available NIR spectral datasets, and the Safer-AS3A model was compared to other models with similar characteristics. The experimental results indicate that the Safer-AS3A model proposed in our study outperforms comparable models in terms of accuracy and robustness when dealing with scenarios having a limited number of labeled samples. Furthermore, after the training set was expanded with the Safer-AS3A model, the Partial least squares regression (PLSR), Bayesian ridge regression (BRR), and Support vector regression (SVR) models on the Diesel dataset improved their R2 on the test set by 5.923 %, 3.018 %, and 7.331 %, respectively, compared to the models using only the labeled sample set. On the other hand, the Ridge regression (RR), BRR, and SVR models on the test set on the Shoot dataset improved the R2 by 4.169 %, 4.449 %, and 11.597 %, respectively. Overall, the Safer-AS3A model can effectively expand the NIR spectral dataset and considerably improve the performance of the NIR spectral analysis model. Using the AL method, the SSL method, and the co-training method together, a novel and effective method is presented for generating high-quality pseudo-labels. This method opens up new avenues for enhancing the efficiency and precision of NIR spectrum analysis. It also provides novel perspectives on sample diversification and prospective applications in other disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
S僊应助奋斗惜霜采纳,获得10
刚刚
矮小的向雪完成签到 ,获得积分10
刚刚
DMA50发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
2秒前
杜杜发布了新的文献求助10
2秒前
2秒前
gy发布了新的文献求助10
3秒前
WTX完成签到,获得积分0
3秒前
3秒前
JamesPei应助cc采纳,获得30
4秒前
lll发布了新的文献求助10
4秒前
4秒前
4秒前
英俊芷完成签到 ,获得积分10
5秒前
Orange应助风中的外套采纳,获得10
5秒前
wst1988发布了新的文献求助10
5秒前
高艳慧完成签到 ,获得积分10
5秒前
5秒前
YZ完成签到,获得积分10
6秒前
茜文发布了新的文献求助10
7秒前
morgan_cao完成签到,获得积分20
9秒前
打打应助乐观银耳汤采纳,获得10
9秒前
10秒前
zzcherished完成签到,获得积分10
10秒前
boen发布了新的文献求助10
10秒前
10秒前
YZ发布了新的文献求助10
11秒前
11秒前
Jasper应助Z1采纳,获得10
11秒前
李爱国应助phobeeee采纳,获得10
11秒前
自觉柠檬完成签到 ,获得积分10
12秒前
12秒前
紧张的斩完成签到,获得积分20
13秒前
13秒前
幸福心跳跳完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932996
求助须知:如何正确求助?哪些是违规求助? 3477787
关于积分的说明 10999166
捐赠科研通 3208177
什么是DOI,文献DOI怎么找? 1772738
邀请新用户注册赠送积分活动 860008
科研通“疑难数据库(出版商)”最低求助积分说明 797435