Unravelling the molecular landscape of endometrial cancer subtypes: insights from multi-omics analysis

医学 计算生物学 组学 子宫内膜癌 癌症 生物信息学 进化生物学 内科学 生物
作者
Yufei Shen,Yan Tian,Jiashan Ding,Zhuo Chen,Zhao Rong,Yingnan Lu,Lucia Li,Hui Zhang,Haiyue Wu,Xi Li,Yu Zhang
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (9): 5385-5395 被引量:1
标识
DOI:10.1097/js9.0000000000001685
摘要

Background: Endometrial cancer (EC) as one of the most common gynecologic malignancies is increasing in incidence during the past 10 years. Genome-Wide Association Studies (GWAS) extended to metabolic and protein phenotypes inspired us to employ multiomics methods to analyze the causal relationships of plasma metabolites and proteins with EC to advance our understanding of EC biology and pave the way for more targeted approaches to its diagnosis and treatment by comparing the molecular profiles of different EC subtypes. Methods: Two-sample mendelian randomization (MR) was performed to investigate the effects of plasma metabolites and proteins on risks of different subtypes of EC (endometrioid and nonendometrioid). Pathway analysis, transcriptomic analysis, and network analysis were further employed to illustrate gene-protein-metabolites interactions underlying the pathogenesis of distinct EC histological types. Results: The authors identified 66 causal relationships between plasma metabolites and endometrioid EC, and 132 causal relationships between plasma proteins and endometrioid EC. Additionally, 40 causal relationships between plasma metabolites and nonendometrioid EC, and 125 causal relationships between plasma proteins and nonendometrioid EC were observed. Substantial differences were observed between endometrioid and nonendometrioid histological types of EC at both the metabolite and protein levels. The authors identified seven overlapping proteins (RGMA, NRXN2, EVA1C, SLC14A1, SLC6A14, SCUBE1, FGF8) in endometrioid subtype and six overlapping proteins (IL32, GRB7, L1CAM, CCL25, GGT2, PSG5) in nonendometrioid subtype and conducted network analysis of above proteins and metabolites to identify coregulated nodes. Conclusions: Our findings observed substantial differences between endometrioid and nonendometrioid EC at the metabolite and protein levels, providing novel insights into gene-protein-metabolites interactions that could influence future EC treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
brisk应助ccc12306采纳,获得30
2秒前
mouse发布了新的文献求助10
3秒前
哈哈哈哈发布了新的文献求助10
3秒前
赫鲁晓夫完成签到,获得积分10
3秒前
4秒前
科研通AI5应助研友_nqa7On采纳,获得10
6秒前
layman发布了新的文献求助10
6秒前
赫鲁晓夫发布了新的文献求助10
6秒前
JamesPei应助震动的曲奇采纳,获得10
6秒前
菜虫虫完成签到,获得积分10
7秒前
科研通AI5应助天天喝咖啡采纳,获得10
9秒前
10秒前
asd78562完成签到,获得积分10
10秒前
多情一江完成签到,获得积分10
10秒前
11秒前
科研通AI5应助layman采纳,获得10
11秒前
13秒前
13秒前
Dawn完成签到 ,获得积分10
14秒前
哈哈哈哈完成签到,获得积分10
15秒前
欢喜的晓霜完成签到,获得积分10
15秒前
16秒前
16秒前
hhh完成签到,获得积分10
19秒前
zhangpp完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
21秒前
22秒前
ya发布了新的文献求助10
22秒前
22秒前
22秒前
yinshan发布了新的文献求助10
25秒前
x1nger发布了新的文献求助10
25秒前
宋涛完成签到 ,获得积分10
27秒前
良辰应助511采纳,获得10
27秒前
大个应助mouse采纳,获得10
27秒前
星辰大海应助勤奋妙梦采纳,获得10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
【求助文献,并非书籍】Perovskite solar cells 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
Strutts and the Arkwrights, 1758-1830 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836985
求助须知:如何正确求助?哪些是违规求助? 3379213
关于积分的说明 10507996
捐赠科研通 3099037
什么是DOI,文献DOI怎么找? 1706692
邀请新用户注册赠送积分活动 821205
科研通“疑难数据库(出版商)”最低求助积分说明 772472