Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer

放射基因组学 转录组 前列腺癌 医学 磁共振成像 癌症 成像生物标志物 计算生物学 生物信息学 放射科 无线电技术 生物 内科学 基因 基因表达 遗传学
作者
Catarina Dinis Fernandes,Annekoos Schaap,J A Kant,Petra J. van Houdt,Hessel Wijkstra,Elise M. Bekers,Simon Linder,Andries M. Bergman,Uulke A. van der Heide,Massimo Mischi,Wilbert Zwart,Federica Eduati,Simona Turco
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:15 (12): 3074-3074 被引量:9
标识
DOI:10.3390/cancers15123074
摘要

Prostate cancer (PCa) is a highly prevalent cancer type with a heterogeneous prognosis. An accurate assessment of tumor aggressiveness can pave the way for tailored treatment strategies, potentially leading to better outcomes. While tumor aggressiveness is typically assessed based on invasive methods (e.g., biopsy), radiogenomics, combining diagnostic imaging with genomic information can help uncover aggressive (imaging) phenotypes, which in turn can provide non-invasive advice on individualized treatment regimens. In this study, we carried out a parallel analysis on both imaging and transcriptomics data in order to identify features associated with clinically significant PCa (defined as an ISUP grade ≥ 3), subsequently evaluating the correlation between them. Textural imaging features were extracted from multi-parametric MRI sequences (T2W, DWI, and DCE) and combined with DCE-derived parametric pharmacokinetic maps obtained using magnetic resonance dispersion imaging (MRDI). A transcriptomic analysis was performed to derive functional features on transcription factors (TFs), and pathway activity from RNA sequencing data, here referred to as transcriptomic features. For both the imaging and transcriptomic features, different machine learning models were separately trained and optimized to classify tumors in either clinically insignificant or significant PCa. These models were validated in an independent cohort and model performance was used to isolate a subset of relevant imaging and transcriptomic features to be further investigated. A final set of 31 imaging features was correlated to 33 transcriptomic features obtained on the same tumors. Five significant correlations (p < 0.05) were found, of which, three had moderate strength (|r| ≥ 0.5). The strongest significant correlations were seen between a perfusion-based imaging feature-MRDI A median-and the activities of the TFs STAT6 (-0.64) and TFAP2A (-0.50). A higher-order T2W textural feature was also significantly correlated to the activity of the TF STAT6 (-0.58). STAT6 plays an important role in controlling cell proliferation and migration. Loss of the AP2alpha protein expression, quantified by TFAP2A, has been strongly associated with aggressiveness and progression in PCa. According to our findings, a combination of texture features extracted from T2W and DCE, as well as perfusion-based pharmacokinetic features, can be considered for the prediction of clinically significant PCa, with the pharmacokinetic MRDI A feature being the most correlated with the underlying transcriptomic information. These results highlight a link between quantitative imaging features and the underlying transcriptomic landscape of prostate tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
重要的小刘完成签到,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI2S应助墨墨采纳,获得10
4秒前
SYLH应助winner采纳,获得10
4秒前
waitingfor发布了新的文献求助10
5秒前
5秒前
哩哩完成签到 ,获得积分10
6秒前
咸鱼发布了新的文献求助10
6秒前
6秒前
7秒前
培根炒股完成签到,获得积分10
7秒前
SYLH应助天真的不凡采纳,获得10
7秒前
xsx完成签到,获得积分10
7秒前
8秒前
NiS完成签到,获得积分10
8秒前
上官若男应助高兴金毛采纳,获得10
9秒前
9秒前
夏蓉完成签到,获得积分10
9秒前
10秒前
10秒前
高大的水壶应助段一帆采纳,获得10
10秒前
fd163c应助欢喜的映安采纳,获得10
11秒前
11秒前
王小磊发布了新的文献求助10
11秒前
sym应助畅快老虎采纳,获得50
12秒前
Frozen完成签到,获得积分10
12秒前
无限猕猴桃应助墨墨采纳,获得20
12秒前
Ava应助xialuoke采纳,获得10
13秒前
旦皋发布了新的文献求助10
13秒前
易寒完成签到 ,获得积分10
14秒前
NiS发布了新的文献求助10
15秒前
JerryZ发布了新的文献求助10
15秒前
田様应助Brave采纳,获得10
17秒前
19秒前
midred3完成签到,获得积分20
19秒前
FashionBoy应助咸鱼采纳,获得10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4035526
求助须知:如何正确求助?哪些是违规求助? 3573837
关于积分的说明 11370799
捐赠科研通 3303932
什么是DOI,文献DOI怎么找? 1818720
邀请新用户注册赠送积分活动 892348
科研通“疑难数据库(出版商)”最低求助积分说明 814743