Human-like problem-solving abilities in large language models using ChatGPT

集合(抽象数据类型) 计算机科学 样品(材料) 人工智能 学习迁移 结果(博弈论) 机器学习 自然语言处理 数学 化学 色谱法 程序设计语言 数理经济学
作者
Graziella Orrù,Andrea Piarulli,Ciro Conversano,Angelo Gemignani
出处
期刊:Frontiers in artificial intelligence [Frontiers Media]
卷期号:6 被引量:16
标识
DOI:10.3389/frai.2023.1199350
摘要

The field of Artificial Intelligence (AI) has seen a major shift in recent years due to the development of new Machine Learning (ML) models such as Generative Pre-trained Transformer (GPT). GPT has achieved previously unheard-of levels of accuracy in most computerized language processing tasks and their chat-based variations.The aim of this study was to investigate the problem-solving abilities of ChatGPT using two sets of verbal insight problems, with a known performance level established by a sample of human participants.A total of 30 problems labeled as "practice problems" and "transfer problems" were administered to ChatGPT. ChatGPT's answers received a score of "0" for each incorrectly answered problem and a score of "1" for each correct response. The highest possible score for both the practice and transfer problems was 15 out of 15. The solution rate for each problem (based on a sample of 20 subjects) was used to assess and compare the performance of ChatGPT with that of human subjects.The study highlighted that ChatGPT can be trained in out-of-the-box thinking and demonstrated potential in solving verbal insight problems. The global performance of ChatGPT equalled the most probable outcome for the human sample in both practice problems and transfer problems as well as upon their combination. Additionally, ChatGPT answer combinations were among the 5% of most probable outcomes for the human sample both when considering practice problems and pooled problem sets. These findings demonstrate that ChatGPT performance on both set of problems was in line with the mean rate of success of human subjects, indicating that it performed reasonably well.The use of transformer architecture and self-attention in ChatGPT may have helped to prioritize inputs while predicting, contributing to its potential in verbal insight problem-solving. ChatGPT has shown potential in solving insight problems, thus highlighting the importance of incorporating AI into psychological research. However, it is acknowledged that there are still open challenges. Indeed, further research is required to fully understand AI's capabilities and limitations in verbal problem-solving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子abcy完成签到,获得积分10
1秒前
Yeats完成签到,获得积分20
2秒前
小马甲应助火星上莛采纳,获得10
4秒前
5秒前
LSY完成签到,获得积分10
5秒前
Orange应助Yang采纳,获得10
6秒前
6秒前
Hillson发布了新的文献求助10
10秒前
10秒前
11秒前
WangSihu发布了新的文献求助10
11秒前
DAN完成签到 ,获得积分10
13秒前
神之韵完成签到 ,获得积分10
13秒前
13秒前
14秒前
赘婿应助羊羊羊采纳,获得10
14秒前
孤独豆芽完成签到,获得积分10
16秒前
彭于晏应助舒心绿柏采纳,获得10
16秒前
左丘绝山发布了新的文献求助10
16秒前
心灵美大侠完成签到,获得积分10
18秒前
瘦瘦山菡完成签到,获得积分20
18秒前
火星上莛发布了新的文献求助10
19秒前
香蕉觅云应助狮子清明尊采纳,获得10
19秒前
领导范儿应助zy86689492采纳,获得10
20秒前
20秒前
苏卿应助绝尘采纳,获得20
22秒前
残幻应助Apple采纳,获得10
23秒前
lvsehx发布了新的文献求助10
24秒前
生动的以云完成签到 ,获得积分10
24秒前
归尘发布了新的文献求助20
24秒前
25秒前
小李发布了新的文献求助10
25秒前
qiao应助w小主采纳,获得10
26秒前
26秒前
希望天下0贩的0应助willis采纳,获得10
26秒前
27秒前
顺利曼香发布了新的文献求助10
27秒前
SciGPT应助瘦瘦山菡采纳,获得10
27秒前
Orange应助huangweiwei采纳,获得30
28秒前
传奇3应助左丘绝山采纳,获得10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787809
求助须知:如何正确求助?哪些是违规求助? 3333381
关于积分的说明 10261715
捐赠科研通 3049136
什么是DOI,文献DOI怎么找? 1673429
邀请新用户注册赠送积分活动 801915
科研通“疑难数据库(出版商)”最低求助积分说明 760419