Water-Formation-Energy-Driven Electrochemical Process Modulation

作者
Ritwik Mondal,S. Yuvaraj,Bhojkumar Nayak,Musthafa Ottakam Thotiyl
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:58 (24): 3558-3573
标识
DOI:10.1021/acs.accounts.5c00565
摘要

ConspectusWater formation through H+/OH- recombination, traditionally viewed as an electrochemically inert, nonredox process, harbors untapped potential when re-examined through an electrochemical perspective. Recent progress highlights that this energy, close to 160000 trillion joules/year globally, often lost in industrial neutralization processes, can be electrochemically captured within a decoupled acid-alkali framework by utilizing a hydrogen redox, albeit without a net redox. This paradigm shift unlocks unique opportunities and possibilities for electrochemical process modulation, often driving thermodynamically uphill reactions spontaneously under ambient conditions, transcending the capabilities of conventional electrochemical energy devices. In this Account, we delineate recent conceptual breakthroughs and experimental progress that have advanced the mechanistic comprehension and functional implementation of water formation energy (WFE) processes as well as the thermodynamic and kinetic factors that dictate their efficiency. Critical to this innovation is the strategic use of hydrogen redox, which enabled the direct capturing of WFE as an electrical driving force, leading to a unique class of galvanic and electrolytic devices with multifunctional capabilities. Introducing a temperature gradient into this WFE system yields a galvanic-thermogalvanic hybrid device, utilizing entropy gain and enhancing the energy output of WFE-based devices. A galvanic desalination concept based on WFE demonstrates salt removal during electricity generation through an eventually nonredox process involving only gases and water species, avoiding contamination of the desalination pathway. The WFE approach facilitates spontaneous hydrogen fuel purification and decarbonization from complex impurity streams in a single step at room temperature and pressure. Additionally, the design of a spontaneous isotopic water formation cell by harvesting heavy water formation energy results in the unique generation of heavy hydrogen at the expense of light hydrogen. WFE enables ambient-condition reformation of hydrogen storage molecules, including hydrazine, aliphatic and aromatic alcohols, and biomass derivatives, marking a new era of green chemistry. Its integration into zinc batteries affords dual utilities: high-performance energy storage coupled to on-demand electro-organic synthesis, peroxide production, and clean hydrogen generation. In aqueous supercapacitors, WFE extends the voltage window to nearly 2 V, beyond thermodynamic constraints, thereby boosting the energy storage without compromising their power capabilities. Moreover, WFE underpins low-voltage electro-organic synthesis of valuable chemicals paired with hydrogen fuel synthesis, low-bias photoelectrochemical water splitting, and electricity-efficient electrolytic desalination, providing a versatile toolkit for modulating next-generation electrolytic processes. This Account underlines that WFE, once overlooked due to its nonredox nature, now stands as a rich, tunable, and scalable thermodynamic platform. Its strategic electrochemical capturing not only elevates the efficiency and sustainability of electrochemical systems, but also paves the way for a new paradigm in energy science, transforming what was once deemed an inert process into a cornerstone of the next-generation electrochemical technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
TEMPO发布了新的文献求助10
4秒前
mzf发布了新的文献求助10
5秒前
aquar1us完成签到,获得积分10
6秒前
爱学习的小张完成签到,获得积分10
6秒前
7秒前
Ganann完成签到 ,获得积分10
7秒前
llh发布了新的文献求助10
8秒前
长白雪茫茫完成签到,获得积分10
8秒前
酷酷蜗牛发布了新的文献求助100
9秒前
REBECCA完成签到 ,获得积分10
11秒前
小飞侠完成签到 ,获得积分10
12秒前
唯心如意完成签到,获得积分10
13秒前
Bob完成签到,获得积分10
13秒前
白智妍完成签到,获得积分10
13秒前
HOOW完成签到,获得积分10
14秒前
汉堡包应助卫青柏采纳,获得30
18秒前
21秒前
22秒前
YY土豆侠完成签到,获得积分20
22秒前
量子星尘发布了新的文献求助10
23秒前
Colin发布了新的文献求助10
23秒前
现实的电源完成签到,获得积分20
24秒前
25秒前
25秒前
武安发布了新的文献求助10
26秒前
xxPcy完成签到,获得积分10
27秒前
不吃香菜发布了新的文献求助10
27秒前
27秒前
帅气念之发布了新的文献求助10
28秒前
WenzongLai完成签到,获得积分10
29秒前
早安完成签到,获得积分10
30秒前
31秒前
科研通AI6应助冷静苗条采纳,获得10
32秒前
32秒前
碧蓝青梦发布了新的文献求助10
33秒前
墨辞完成签到,获得积分10
34秒前
星辰大海应助清风浊酒采纳,获得10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540269
求助须知:如何正确求助?哪些是违规求助? 4626796
关于积分的说明 14601195
捐赠科研通 4567835
什么是DOI,文献DOI怎么找? 2504244
邀请新用户注册赠送积分活动 1481913
关于科研通互助平台的介绍 1453562