动态范围
线性
高动态范围
宽动态范围
探测器
航程(航空)
材料科学
可扩展性
能量(信号处理)
计算机科学
电子工程
物理
工程类
电信
量子力学
数据库
复合材料
作者
Shirin Pourashraf,Joshua W. Cates,Craig S. Levin
标识
DOI:10.1109/trpms.2023.3344399
摘要
This article focuses on adapting linearization strategies for annihilation photon energy measurement for a time-of-flight (TOF) positron emission tomography (PET) system that achieves $\sim 100$ picosecond (ps) full-width at half maximum (FWHM) coincidence time resolution (CTR). We have adapted the method of dynamic TOT (DynTOT) for our scalable TOF-PET detector readout electronics to linearize the energy spectra while maintaining $\sim 100$ ps FWHM CTR. The linear response of the resulting DynTOT circuit facilitates improved energy performance compared with conventional time-over-threshold (TOT). Our detector design has the capability to position the 3-D coordinates of one or more 511-keV photon interactions. To facilitate this goal, DynTOT's linearity across the entire energy range enables accurate measurement of low-energy interactions that is required for more accurate positioning of intercrystal scatter events. This DynTOT block is implemented by off-the-shelf discrete components and consumes only 11 mW power per detector layer unit design comprising 24:1 multiplexed energy and timing channels. We first validated the performance of DynTOT using single $3\times 3\times10$ mm3 LGSO scintillation crystals side-coupled to arrays of three $3\times3$ mm2 SiPMs which achieved 511-keV photopeak energy resolutions of 13.6 ± 0.4%, 13.0 ± 0.8%, and 17.1 ± 0.6% for conventional pulse height, DynTOT, and conventional TOT methods, respectively. Then, we stretched by roughly 7-fold the DynTOT digital pulses (energy) generated from side-coupling $2\times4$ array of $3\times 3\times10$ mm3 crystals to 24 SiPMs, and achieved 511-keV photopeak energy resolutions of 11.8 ± 0.7% with a dynamic range from less than 60 to 1274 keV, making that suitable for methods of accurate 3-D positioning of intercrystal-scatter interactions. Moreover, CTR with a highly multiplexed timing circuit was measured using these extended DynTOT pulses for energy gating, resulting in an average 108 ± 1.3 ps FWHM CTR.
科研通智能强力驱动
Strongly Powered by AbleSci AI