Utilizing time series for forecasting the development trend of coronavirus: A validation process

自回归积分移动平均 时间序列 计算机科学 推论 系列(地层学) 数据挖掘 图形 过程(计算) 算法 人工智能 机器学习 理论计算机科学 古生物学 操作系统 生物
作者
Xusong Zhang,Feng Wang
出处
期刊:Journal of Computational Methods in Sciences and Engineering [IOS Press]
卷期号:23 (6): 2923-2935
标识
DOI:10.3233/jcm226993
摘要

A time series prediction model was developed to predict the number of confirmed cases from October 2022 to November 2022 based on the number of confirmed cases of New Coronary Pneumonia from January 20, 2021 to September 20, 2022. We will analyze the number of confirmed cases in the Philippines from January 1, 2020 to September 20, 2022 to build a prediction model and make predictions. Among the works of other scholars, it can be shown that time series is an excellent forecasting model, particularly around dates. The study in this work begins with the original data for inference, and each phase of inference is based on objective criteria, such as smooth data analysis utilising ADF detection and ACF graph analysis, and so on. When comparing the performance of algorithms with functions for time series models, hundreds of algorithms are evaluated one by one on the basis of the same data source in order to find the best method. Following the acquisition of the methods, ADF detection and ACF graph analysis are undertaken to validate them, resulting in a closed-loop research. Although the dataset in this study was generated from publicly available data from the Philippines (our data world for coronaviruses), the ARIMA model used to predict data beyond September 20, 2022 exhibited unusually high accuracy. This model was used to compare the performance of several algorithms, each evaluated using the same training data. Finally, the best R2 for the ARIMA model was 92.56% or higher, and iterative optimization of the function produced a predictive model with an R2 of 97.6%. This reveals the potential trajectory of coronaviruses in the Philippines. Finally, the model with the greatest performance is chosen as the prediction model. In actual implementations, several subjective and objective elements, such as the government’s epidemic defence measures, the worldwide pandemic condition, and whether the data source distributes the data in a timely way, might restrict the prediction’s accuracy. Such prediction findings can be used as a foundation for data releases by health agencies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大怪完成签到,获得积分10
1秒前
刘博虎完成签到,获得积分10
2秒前
nusiew完成签到,获得积分10
4秒前
Perrylin718完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Hhhhh完成签到 ,获得积分10
11秒前
木子雨完成签到 ,获得积分10
16秒前
智发完成签到,获得积分10
21秒前
CHEN完成签到 ,获得积分0
22秒前
5433完成签到 ,获得积分10
26秒前
幺幺幺完成签到 ,获得积分10
26秒前
海边的曼彻斯特完成签到 ,获得积分10
26秒前
强哥完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
falling_learning完成签到 ,获得积分10
28秒前
啊离完成签到 ,获得积分10
32秒前
songyu完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助10
47秒前
耍酷的指甲油完成签到 ,获得积分10
48秒前
阔达的背包完成签到 ,获得积分10
49秒前
ycd完成签到,获得积分10
51秒前
Fury完成签到 ,获得积分10
53秒前
瘦瘦的枫叶完成签到 ,获得积分10
54秒前
alixy完成签到,获得积分10
55秒前
酷波er应助风信子deon01采纳,获得10
57秒前
onmyway完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
偷得浮生半日闲完成签到,获得积分10
1分钟前
caopeili完成签到 ,获得积分10
1分钟前
1分钟前
小药童应助科研通管家采纳,获得10
1分钟前
hyxu678应助科研通管家采纳,获得50
1分钟前
小药童应助科研通管家采纳,获得10
1分钟前
专注德地发布了新的文献求助10
1分钟前
温婉的香氛完成签到 ,获得积分10
1分钟前
153266916完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Kelsey完成签到 ,获得积分10
1分钟前
砚木完成签到 ,获得积分10
1分钟前
浮游应助xyzlancet采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628794
求助须知:如何正确求助?哪些是违规求助? 4718478
关于积分的说明 14964964
捐赠科研通 4786675
什么是DOI,文献DOI怎么找? 2555959
邀请新用户注册赠送积分活动 1517113
关于科研通互助平台的介绍 1477850