Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning (PIML) Methods: Towards Robust Metrics

多任务学习 人工智能 统计物理学 机器学习 计算机科学 物理 心理学 经济 管理 任务(项目管理)
作者
Michael Penwarden,Houman Owhadi,Robert Kirby
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.11126
摘要

Physics-informed machine learning (PIML) as a means of solving partial differential equations (PDE) has garnered much attention in the Computational Science and Engineering (CS&E) world. This topic encompasses a broad array of methods and models aimed at solving a single or a collection of PDE problems, called multitask learning. PIML is characterized by the incorporation of physical laws into the training process of machine learning models in lieu of large data when solving PDE problems. Despite the overall success of this collection of methods, it remains incredibly difficult to analyze, benchmark, and generally compare one approach to another. Using Kolmogorov n-widths as a measure of effectiveness of approximating functions, we judiciously apply this metric in the comparison of various multitask PIML architectures. We compute lower accuracy bounds and analyze the model's learned basis functions on various PDE problems. This is the first objective metric for comparing multitask PIML architectures and helps remove uncertainty in model validation from selective sampling and overfitting. We also identify avenues of improvement for model architectures, such as the choice of activation function, which can drastically affect model generalization to "worst-case" scenarios, which is not observed when reporting task-specific errors. We also incorporate this metric into the optimization process through regularization, which improves the models' generalizability over the multitask PDE problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甲灯灯完成签到 ,获得积分20
1秒前
年轻又帅奇完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
深情安青应助淡定可乐采纳,获得10
2秒前
2秒前
daheipidan完成签到,获得积分10
3秒前
who完成签到,获得积分10
4秒前
4秒前
袁衣发布了新的文献求助30
4秒前
敛袂完成签到,获得积分10
4秒前
suxiang应助dsdingding采纳,获得10
5秒前
5秒前
5秒前
1111发布了新的文献求助10
6秒前
郑春梅完成签到 ,获得积分10
7秒前
junjunjun发布了新的文献求助10
7秒前
希望天下0贩的0应助sunny采纳,获得10
8秒前
Sy发布了新的文献求助10
8秒前
jack发布了新的文献求助10
9秒前
9秒前
麟语桐完成签到,获得积分10
10秒前
12秒前
13秒前
Ava应助科研采纳,获得10
13秒前
洪海禹发布了新的文献求助10
13秒前
unaive完成签到,获得积分10
13秒前
科研通AI5应助袁衣采纳,获得30
13秒前
14秒前
隐形初雪完成签到 ,获得积分10
14秒前
双丁宝贝完成签到,获得积分10
14秒前
14秒前
淡定的竺发布了新的文献求助30
16秒前
minjeong完成签到,获得积分10
16秒前
言甚完成签到,获得积分10
17秒前
甲灯灯关注了科研通微信公众号
17秒前
junjunjun完成签到,获得积分20
18秒前
18秒前
量子星尘发布了新的文献求助150
18秒前
丘比特应助陈勇杰采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069191
求助须知:如何正确求助?哪些是违规求助? 4290611
关于积分的说明 13368297
捐赠科研通 4110680
什么是DOI,文献DOI怎么找? 2251050
邀请新用户注册赠送积分活动 1256268
关于科研通互助平台的介绍 1188741