Mechanical properties of additively manufactured lattice structures designed by deep learning

有限元法 格子(音乐) 机械工程 计算机科学 参数化设计 制作 生成语法 材料科学 参数统计 人工智能 结构工程 工程类 数学 病理 物理 统计 替代医学 医学 声学
作者
Nurullah Yüksel,Oğulcan Eren,Hüseyin Rıza Börklü,Hüseyin Kürşad Sezer
出处
期刊:Thin-walled Structures [Elsevier BV]
卷期号:196: 111475-111475 被引量:23
标识
DOI:10.1016/j.tws.2023.111475
摘要

Lattice structures, characterized by their repetitive lightweight cellular forms, enable more effective load distribution compared to solid bodies. Designing lattice structures with tailored mechanical properties remains challenging due to the numerous design variables and their complex relationship with mechanical performance. This paper presents a novel approach employing a deep learning-based Generative Adversarial Network (GAN) model to address this engineering challenge. With its potential for creativity and innovation, GAN provides design diversity that cannot be achieved with traditional design methods or other generative design models. Distinct from previous studies, the GAN training data set consists of lattice structures with improved mechanical properties obtained using parametric design and simulated annealing method. This data set enables the GAN model to create lattice structures with high strength-to-weight ratio. These lattice designs were fabricated using a commercial Material Jetting Additive Manufacturing (MJ-AM) machine, allowing for the production of complex structures. The mechanical performance of the 3D-printed unit cell samples was evaluated through Finite Element Analysis (FEA), compression, and impact testing. The results reveal that the lattice structures generated using the GAN model demonstrated improved mechanical strength (i.e. up to 108 % and 150 % improved strength and elongation performance, respectively). This study shows AI's potential to widen lattice structure design space and create tailored parts with improved mechanical properties. The research also paves the way for future exploration of deep learning techniques in revolutionizing the design and fabrication of parts with tailored mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
javalin完成签到,获得积分20
刚刚
刚刚
Walter完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
Ava应助LY采纳,获得10
3秒前
斯文败类应助云起龙都采纳,获得10
3秒前
加油发布了新的文献求助10
3秒前
4秒前
pallts发布了新的文献求助10
5秒前
6秒前
今后应助berg采纳,获得10
6秒前
7秒前
小蘑菇应助罐罐采纳,获得10
7秒前
7秒前
7秒前
dnmd发布了新的文献求助10
8秒前
Walter发布了新的文献求助10
8秒前
8秒前
8秒前
在水一方应助Zhai采纳,获得10
9秒前
云起龙都完成签到,获得积分10
9秒前
大力信封完成签到,获得积分10
10秒前
11秒前
you翅膀的鱼完成签到,获得积分10
11秒前
12秒前
Hollen发布了新的文献求助10
12秒前
旺仔冰激凌完成签到,获得积分10
12秒前
rong完成签到 ,获得积分10
13秒前
气味发布了新的文献求助10
13秒前
13秒前
SnaiLinsist发布了新的文献求助10
14秒前
15秒前
15秒前
angelinazh发布了新的文献求助10
16秒前
云起龙都发布了新的文献求助10
16秒前
科研通AI5应助齐齐采纳,获得10
16秒前
18秒前
柔弱蹇完成签到 ,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787003
求助须知:如何正确求助?哪些是违规求助? 3332619
关于积分的说明 10256691
捐赠科研通 3047851
什么是DOI,文献DOI怎么找? 1672796
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271