A Strategy based on Bioinformatics and Machine Learning Algorithms Reveals Potential Mechanisms of Shelian Capsule against Hepatocellular Carcinoma

小桶 基因 计算生物学 DNA微阵列 生物信息学 基因表达谱 微阵列分析技术 基因表达 遗传学 基因本体论 生物
作者
Xianqiang Zhou,Fang Tan,Suxian Zhang,Anan Wang,Tiansong Zhang
出处
期刊:Current Pharmaceutical Design [Bentham Science Publishers]
卷期号:30 (5): 377-405 被引量:3
标识
DOI:10.2174/0113816128284465240108071554
摘要

Background: Hepatocellular carcinoma (HCC) is a prevalent and life-threatening form of cancer, with Shelian Capsule (SLC), a traditional Chinese medicine (TCM) formulation, being recommended for clinical treatment. However, the mechanisms underlying its efficacy remain elusive. This study sought to uncover the potential mechanisms of SLC in HCC treatment using bioinformatics methods. Methods: Bioactive components of SLC were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and HCC-related microarray chip data were sourced from the Gene Expression Omnibus (GEO) database. The selection criteria for components included OB ≧ 30% and DL ≧ 0.18. By integrating the results of differential expression analysis and weighted gene co-expression network analysis (WGCNA), disease-related genes were identified. Therapeutic targets were determined as shared items between candidate targets and disease genes. Protein-protein interaction (PPI) network analysis was conducted for concatenated genes, with core protein clusters identified using the MCODE plugin. Machine learning algorithms were applied to identify signature genes within therapeutic targets. Subsequently, immune cell infiltration analysis, single-cell RNA sequencing (sc-RNA seq) analysis, molecular docking, and ADME analysis were performed for the screened genes. Result: A total of 153 SLC ingredients and 170 candidate targets were identified, along with 494 HCCrelated disease genes. Overlapping items between disease genes and drug candidates represented therapeutic genes, and PPI network analysis was conducted using concatenated genes. MCODE1 and MCODE2 cluster genes underwent Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Four signature genes (TOP2A, CYP1A2, CYP2B6, and IGFBP3) were identified from 28 therapeutic genes using 3 machine learning algorithms, with ROC curves plotted. Molecular docking validated the interaction modes and binding abilities between signature genes and corresponding compounds, with free binding energy all <-7 kcal/mol. Finally, ADME analysis revealed similarities between certain SLC components and the clinical drugs Sorafenib and Lenvatinib. Conclusion: In summary, our study revealed that the mechanism underlying the anti-HCC effects of SLC involves interactions at three levels: components (quercetin, beta-sitosterol, kaempferol, baicalein, stigmasterol, and luteolin), pathways (PI3K-Akt signaling pathway, TNF signaling pathway, and IL-17 signaling pathway), and targets (TOP2A, CYP1A2, CYP2B6, and IGFBP3). This study provides preliminary insights into the potential pharmacological mechanisms of SLC in HCC treatment, aiming to support its clinical application and serve as a reference for future laboratory investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
123发布了新的文献求助10
4秒前
4秒前
Jerry完成签到,获得积分10
4秒前
liyuchen发布了新的文献求助10
5秒前
CodeCraft应助morning采纳,获得10
5秒前
香妃完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
烟花应助hqlran采纳,获得10
9秒前
9秒前
ykiiii发布了新的文献求助10
10秒前
fairy完成签到 ,获得积分10
11秒前
12秒前
yiy37发布了新的文献求助10
13秒前
xiaoze发布了新的文献求助10
13秒前
sanben发布了新的文献求助10
14秒前
yordeabese完成签到,获得积分10
16秒前
鲤鱼幻香发布了新的文献求助10
16秒前
陈源发布了新的文献求助10
17秒前
香蕉觅云应助jin采纳,获得10
17秒前
汉堡包应助莹亮的星空采纳,获得10
17秒前
今后应助yu采纳,获得10
18秒前
18秒前
刀锋完成签到,获得积分10
19秒前
tc应助高兴的半山采纳,获得10
19秒前
不想干活应助高兴的半山采纳,获得10
19秒前
tigger给tigger的求助进行了留言
19秒前
给我一颗糖完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4466025
求助须知:如何正确求助?哪些是违规求助? 3927930
关于积分的说明 12189151
捐赠科研通 3581116
什么是DOI,文献DOI怎么找? 1967852
邀请新用户注册赠送积分活动 1006309
科研通“疑难数据库(出版商)”最低求助积分说明 900458