A mechanistic review on machine learning-supported detection and analysis of volatile organic compounds for food quality and safety

可追溯性 电子鼻 食品质量 食品安全 质量保证 质量(理念) 计算机科学 气味 食品工业 生化工程 风险分析(工程) 工程类 人工智能 化学 食品科学 业务 运营管理 哲学 外部质量评估 软件工程 有机化学 认识论
作者
Yihang Feng,Yi Wang,Burcu Beykal,Mingyu Qiao,Zhenlei Xiao,Yangchao Luo
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:143: 104297-104297 被引量:37
标识
DOI:10.1016/j.tifs.2023.104297
摘要

Food quality and safety have received much more attention in recent years thanks to the increase in food consumption and customer awareness of food quality assurance. Volatile organic compounds (VOCs) detection and analysis techniques are powerful tools for assessing the quality of food products due to their non-destructive, eco-friendly, continuous, and real-time monitoring merits. Machine learning (ML) -supported electronic nose (EN), colorimetric sensor array (CSA), and gas chromatography (GC) hyphened techniques (e.g., GC-MS and GC-IMS) are becoming a hot research area in Food Sciences. In this review, the rationales, advantages, and limitations of these technologies are introduced, as well as ML implementation details in application scenarios. In particular, ML fundamentals of data processing, modeling, and performance evaluation are discussed based on the most recent cases of food VOC detection and analysis studies, followed by the comprehensive applications of ML in different fields of food research including origin traceability, adulteration, quality control, and pathogen detection. With advances in ML, e.g., parallel computing, computer vision, and odor imaging, new food VOC technologies like CSA and EN are replacing traditional GC detection and analysis. Many previously intractable problems in the food industry, e.g., food origin traceability and food adulteration, have been solved by state-of-the-art ML algorithms. However, new challenges in food VOC detection and analysis are emerging, and researchers are exploring new solutions, e.g., edge/cloud computing, EN sensor drifting, and CSA standardized fabrication, to solve more food quality and safety problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
词语给词语的求助进行了留言
4秒前
明理发布了新的文献求助10
9秒前
9秒前
刘一安完成签到 ,获得积分10
10秒前
11秒前
稗子发布了新的文献求助10
13秒前
15秒前
英俊的铭应助taowang采纳,获得10
16秒前
18秒前
稗子完成签到,获得积分10
20秒前
ssh完成签到,获得积分10
20秒前
闪999发布了新的文献求助10
20秒前
雷雷发布了新的文献求助10
22秒前
1793275356完成签到,获得积分20
23秒前
liuesnvn发布了新的文献求助10
23秒前
27秒前
bc完成签到,获得积分10
31秒前
33秒前
华仔应助1793275356采纳,获得10
34秒前
34秒前
immm完成签到,获得积分10
35秒前
科研通AI5应助巩泓辰采纳,获得10
37秒前
38秒前
大模型应助wdb采纳,获得10
38秒前
DL0717发布了新的文献求助30
38秒前
123发布了新的文献求助10
38秒前
Nick应助Steven采纳,获得30
41秒前
明理完成签到,获得积分10
41秒前
41秒前
42秒前
43秒前
45秒前
lj66发布了新的文献求助10
48秒前
nanda完成签到,获得积分0
48秒前
zkk发布了新的文献求助10
48秒前
49秒前
49秒前
50秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778938
求助须知:如何正确求助?哪些是违规求助? 3324589
关于积分的说明 10218785
捐赠科研通 3039563
什么是DOI,文献DOI怎么找? 1668321
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440