Review of the ethanol-induced V-type starch (EVS) with different types, including its preparation, characterization, and possible application in food field

淀粉 肿胀 的 纳米尺度 纳米技术 材料科学 化学工程 化学 食品科学 复合材料 工程类
作者
Jiaxin Li,Aixia Wang,Mengzi Nie,Lili Wang,Liya Liu,Fengzhong Wang,Edoardo Capuano,Litao Tong
出处
期刊:Food Hydrocolloids [Elsevier]
卷期号:151: 109755-109755
标识
DOI:10.1016/j.foodhyd.2024.109755
摘要

Ethanol can induce the formation of a class of V-type starch under different conditions, which is later evaporated during subsequent drying process, and this ethanol-induced V-type starch (EVS) has two distinctive features. On the one hand, most of EVS can quickly swell into paste or dissolve in cold water, which could be expressed in terms of increased solubility, swelling power, viscosity, water absorption, or water retention capacity in cold water; on the other hand, the evaporation of ethanol leaves a V-type single helix cavity structure, which has the potential to rapidly encapsulate a variety of guest molecules under mild conditions and has attracted more and more attention of researchers. Different preparation methods result in EVS of different types: granular EVS, non-granular EVS and nanoscale EVS depending on the size and the structural scale of the native starch that is preserved during the preparation process. Different types of EVS have different performances in terms of paste properties and encapsulation characteristics. Among the three EVS, the granular and non-granular EVS swell more rapidly in cold water, and the EVS at nanoscale has a higher proportion of V-type single helical cavity structure with a higher encapsulation potential. This paper summarizes the variety of preparation methods of EVS, discusses the mechanism underlying its formation, analyses the relationship between structure and function properties, presents the prospects of development and the existing challenges in perfecting the structure of EVS, and further proposes the possible applications of granular, non-granular and nanoscale EVS in food field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遇见飞儿发布了新的文献求助10
刚刚
咋咋发布了新的文献求助10
刚刚
现代晓绿完成签到 ,获得积分10
1秒前
汉化完成签到,获得积分10
1秒前
刘筱完成签到,获得积分10
1秒前
王珺发布了新的文献求助10
3秒前
搞怪Max完成签到,获得积分10
4秒前
5秒前
斯文败类应助下北泽采纳,获得10
5秒前
投石问路完成签到,获得积分10
7秒前
笨笨米卡完成签到,获得积分10
7秒前
下下潜完成签到,获得积分10
8秒前
圆圆完成签到,获得积分10
9秒前
12秒前
justsoso完成签到,获得积分10
13秒前
pawpaw009完成签到,获得积分10
13秒前
田様应助毛肚吃不腻采纳,获得10
13秒前
乐乐应助zz采纳,获得10
14秒前
酷波er应助流星雨采纳,获得10
15秒前
15秒前
15秒前
16秒前
负减淇发布了新的文献求助10
18秒前
一战完成签到,获得积分10
18秒前
雀巢咖啡完成签到,获得积分10
19秒前
20秒前
20秒前
li发布了新的文献求助20
21秒前
杨钧完成签到 ,获得积分10
22秒前
霍山柳发布了新的文献求助10
23秒前
24秒前
缓慢新竹完成签到 ,获得积分10
26秒前
荔枝小妹完成签到 ,获得积分10
26秒前
西西完成签到,获得积分10
26秒前
Dapeng完成签到,获得积分10
27秒前
包凡之完成签到,获得积分10
28秒前
zz发布了新的文献求助10
29秒前
热切菩萨应助单薄茗采纳,获得10
30秒前
啊算法撒旦F完成签到,获得积分10
30秒前
31秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 1500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2469488
求助须知:如何正确求助?哪些是违规求助? 2136598
关于积分的说明 5444029
捐赠科研通 1861002
什么是DOI,文献DOI怎么找? 925605
版权声明 562702
科研通“疑难数据库(出版商)”最低求助积分说明 495140