Association between high or low-quality carbohydrate with depressive symptoms and socioeconomic-dietary factors model based on XGboost algorithm: From NHANES 2007–2018

全国健康与营养检查调查 社会经济地位 萧条(经济学) 抑郁症状 病人健康调查表 生活质量(医疗保健) 贝叶斯多元线性回归 算法 环境卫生 医学 内科学 计算机科学 精神科 线性回归 焦虑 机器学习 宏观经济学 护理部 经济 人口
作者
Xiangji Dang,Ruifeng Yang,Jing Qi,Yingdi Niu,Hongjie Li,Jingxuan Zhang,Yan Liu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:351: 507-517 被引量:7
标识
DOI:10.1016/j.jad.2024.01.220
摘要

Depressive symptoms are a serious public mental health problem, and dietary intake is often considered to be associated with depressive symptoms. However, the relationship between the quality of dietary carbohydrates and depressive symptoms remains unclear. Therefore, this study aimed to investigate the relationship between high and low-quality carbohydrates and depressive symptoms and to attempt to construct an integrated model using machine learning to predict depressive symptoms. A total of 4982 samples from the National Health and Nutrition Examination Survey (NHANES) were included in this study. Carbohydrate intake was assessed by a 24-h dietary review, and depressive symptoms were assessed using the Patient Health Questionnaire-9 (PHQ9). Variance inflation factor (VIF) and Relief-F algorithms were used for variable feature selection. The results of multivariate linear regression showed a negative association between high-quality carbohydrates and depressive symptoms (β: −0.147, 95 % CI: −0.239, −0.056, p = 0.002) and a positive association between low-quality carbohydrates and depressive symptoms (β: 0.018, 95 % CI: 0.007, 0.280, p = 0.001). Subsequently, we used the XGboost model to produce a comprehensive depressive symptom evaluation model and developed a corresponding online tool (http://8.130.128.194:5000/) to evaluate depressive symptoms clinically. The cross-sectional study could not yield any conclusions regarding causality, and the model has not been validated with external data. Carbohydrate quality is associated with depressive symptoms, and machine learning models that combine diet with socioeconomic factors can be a tool for predicting depression severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘浩发布了新的文献求助10
1秒前
1秒前
2秒前
kalcspin完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
LTY完成签到,获得积分10
3秒前
李明完成签到,获得积分10
3秒前
4秒前
4秒前
biubiu发布了新的文献求助10
5秒前
5秒前
6秒前
Jasper应助含蓄的明雪采纳,获得10
7秒前
FL发布了新的文献求助10
7秒前
刘浩完成签到,获得积分10
7秒前
7秒前
爱笑半雪发布了新的文献求助10
8秒前
8秒前
今后应助凉凉盛夏采纳,获得10
9秒前
小周发布了新的文献求助10
10秒前
TANG发布了新的文献求助10
10秒前
Rocky完成签到 ,获得积分10
12秒前
12秒前
白宇发布了新的文献求助10
12秒前
12秒前
平常妙旋发布了新的文献求助10
13秒前
13秒前
jenniferli发布了新的文献求助10
13秒前
共享精神应助obaica采纳,获得10
14秒前
小二郎应助黎星采纳,获得30
14秒前
英俊的铭应助草莓软糖采纳,获得10
14秒前
14秒前
机智的思山完成签到 ,获得积分10
14秒前
15秒前
zhutier应助啦啦啦啦啦采纳,获得10
15秒前
hfdfffcc完成签到,获得积分10
15秒前
汉堡包应助YB8BALL采纳,获得10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4146350
求助须知:如何正确求助?哪些是违规求助? 3682956
关于积分的说明 11637571
捐赠科研通 3375808
什么是DOI,文献DOI怎么找? 1853497
邀请新用户注册赠送积分活动 915952
科研通“疑难数据库(出版商)”最低求助积分说明 830112