Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review

人工智能 机器学习 计算机科学 自然语言处理 命名实体识别 系统回顾 深度学习 情报检索 临床决策支持系统 信息抽取 梅德林 数据科学 决策支持系统 管理 政治学 法学 经济 任务(项目管理)
作者
Elias Hossain,Rajib Rana,Niall Higgins,Jeffrey Soar,Prabal Datta Barua,Anthony R. Pisani,Kathryn Turner
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106649-106649 被引量:189
标识
DOI:10.1016/j.compbiomed.2023.106649
摘要

Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively.After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: (1) medical note classification, (2) clinical entity recognition, (3) text summarisation, (4) deep learning (DL) and transfer learning architecture, (5) information extraction, (6) Medical language translation and (7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders.We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fh关注了科研通微信公众号
刚刚
Star完成签到 ,获得积分10
1秒前
ding应助孙丽娟采纳,获得10
1秒前
小蘑菇应助zcc采纳,获得10
5秒前
爆米花应助tao采纳,获得10
6秒前
7秒前
lzt完成签到 ,获得积分10
8秒前
赘婿应助Victoria采纳,获得50
8秒前
小二郎应助羊皮大哈采纳,获得10
8秒前
小二郎应助mikura采纳,获得20
10秒前
Xieyusen发布了新的文献求助10
12秒前
13秒前
潇洒闭月完成签到,获得积分10
17秒前
孙一涵发布了新的文献求助100
19秒前
May完成签到 ,获得积分10
22秒前
24秒前
现代汽车完成签到,获得积分10
24秒前
慕青应助周济采纳,获得10
25秒前
斑马发布了新的文献求助10
26秒前
winnie发布了新的文献求助20
31秒前
hellosci666完成签到,获得积分10
31秒前
霍明轩完成签到 ,获得积分10
32秒前
34秒前
星辰大海应助科研小狗采纳,获得10
34秒前
36秒前
39秒前
39秒前
小岚花发布了新的文献求助10
42秒前
44秒前
44秒前
44秒前
guozizi发布了新的文献求助30
46秒前
略略略发布了新的文献求助10
48秒前
Orange应助科研通管家采纳,获得10
48秒前
852应助科研通管家采纳,获得10
48秒前
48秒前
SYLH应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
NexusExplorer应助科研通管家采纳,获得30
48秒前
48秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964773
求助须知:如何正确求助?哪些是违规求助? 3510246
关于积分的说明 11152493
捐赠科研通 3244532
什么是DOI,文献DOI怎么找? 1792405
邀请新用户注册赠送积分活动 873825
科研通“疑难数据库(出版商)”最低求助积分说明 804007