Gain-loss separability in human- but not computer-based changes of mind

背景(考古学) 建议(编程) 心理学 延迟(音频) 自动化 计算机科学 领域(数学分析) 不对称 社会心理学 认知心理学 工程类 数学 机械工程 古生物学 电信 数学分析 物理 量子力学 生物 程序设计语言
作者
Yongling Lin,Pengfei Xu,Jiayu Fan,Ruolei Gu,Yuejia Luo
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:143: 107712-107712 被引量:6
标识
DOI:10.1016/j.chb.2023.107712
摘要

The effect of human-based advice on decision-making represents a "gain-loss asymmetry," as people tend to conform to others' advice in the loss than in the gain domain; however, it is unknown whether the same is true for automatically generated advice. To address a research gap in the literature created by ignoring the gain-loss dimension, we compared the utilization of human- and computer-based advices in the gain and loss domains, separately. Sixty-seven college volunteers were given an opportunity to change their initial decision in a gain- or loss-related context after receiving human- or computer-based advice. Event-related potentials were recorded including the N2 (reflecting psychological conflict) and P3 (reflecting subjective confidence) components. Behavioral data revealed a classic "gain-loss asymmetry" effect in the human-based condition, but not in the computer-based condition, indicating that computerized advice utilization remained prominent across different domains. Moreover, the human-based condition showed a larger option-evoked P3 in the gain than in the loss domain, but no difference was found for the computer-based condition; P3 latency was longer in the human-than in the computer-based condition. These findings support the "automation bias" hypothesis (i.e., automations are trusted more than humans), and may help develop automated advice systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书记发布了新的文献求助10
1秒前
sswbzh给Summer的求助进行了留言
1秒前
别云间发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
小冉不熬夜完成签到 ,获得积分10
2秒前
3秒前
沉静的成危完成签到,获得积分10
4秒前
smz发布了新的文献求助10
4秒前
5秒前
5秒前
科研女工完成签到,获得积分10
6秒前
端庄的夏寒完成签到,获得积分10
6秒前
6秒前
lize5493发布了新的文献求助10
7秒前
orixero应助wuhuiFAFU采纳,获得10
7秒前
hml123发布了新的文献求助10
7秒前
求助人员应助尊敬的丹烟采纳,获得30
7秒前
NexusExplorer应助书记采纳,获得10
8秒前
8秒前
何必在乎发布了新的文献求助10
8秒前
9秒前
善学以致用应助柒_l采纳,获得20
9秒前
ding应助豆丁采纳,获得10
9秒前
10秒前
orixero应助tph采纳,获得30
11秒前
clove发布了新的文献求助10
11秒前
Akim应助xxdn采纳,获得10
11秒前
懦弱的南蕾完成签到,获得积分10
12秒前
13秒前
14秒前
Qiuju完成签到,获得积分10
14秒前
14秒前
15秒前
ss发布了新的文献求助10
15秒前
十七发布了新的文献求助10
15秒前
16秒前
JamesPei应助Wufangfang采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685773
求助须知:如何正确求助?哪些是违规求助? 5046098
关于积分的说明 15188499
捐赠科研通 4844920
什么是DOI,文献DOI怎么找? 2597694
邀请新用户注册赠送积分活动 1550121
关于科研通互助平台的介绍 1508488