Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning

无线电技术 医学 新辅助治疗 外科肿瘤学 磁共振成像 结直肠癌 人工智能 病态的 特征(语言学) 机器学习 放射科 肿瘤科 内科学 癌症 计算机科学 乳腺癌 哲学 语言学
作者
Jiaxuan Peng,Wei Wang,Hui Jin,Xue Qin,Jie Hou,Yang Zhang,Zhenyu Shu
出处
期刊:BMC Cancer [Springer Nature]
卷期号:23 (1): 365-365 被引量:14
标识
DOI:10.1186/s12885-023-10855-w
摘要

Abstract Objective In this study, we aimed to investigate the predictive efficacy of magnetic resonance imaging (MRI) radiomics features at different time points of neoadjuvant therapy for rectal cancer in patients with pathological complete response (pCR). Furthermore, we aimed to develop and validate a radiomics space–time model (RSTM) using machine learning for artificial intelligence interventions in predicting pCR in patients. Methods Clinical and imaging data of 83 rectal cancer patients were retrospectively analyzed, and the patients were classified as pCR and non-pCR patients according to their postoperative pathological results. All patients received one MRI examination before and after neoadjuvant therapy to extract radiomics features, including pre-treatment, post-treatment, and delta features. Delta features were defined by the ratio of the difference between the pre- and the post-treatment features to the pre-treatment feature. After feature dimensionality reduction based on the above three feature types, the RSTM was constructed using machine learning methods, and its performance was evaluated using the area under the curve (AUC). Results The AUC values of the individual basic models constructed by pre-treatment, post-treatment, and delta features were 0.771, 0.681, and 0.871, respectively. Their sensitivity values were 0.727, 0.864, and 0.909, respectively, and their specificity values were 0.803, 0.492, and 0.656, respectively. The AUC, sensitivity, and specificity values of the combined basic model constructed by combining pre-treatment, post-treatment, and delta features were 0.901, 0.909, and 0.803, respectively. The AUC, sensitivity, and specificity values of the RSTM constructed using the K-Nearest Neighbor (KNN) classifier on the basis of the combined basic model were 0.944, 0.871, and 0.983, respectively. The Delong test showed that the performance of RSTM was significantly different from that of pre-treatment, post-treatment, and delta models ( P < 0.05) but not significantly different from the combined basic model of the three ( P > 0.05). Conclusions The RSTM constructed using the KNN classifier based on the combined features of before and after neoadjuvant therapy and delta features had the best predictive efficacy for pCR of neoadjuvant therapy. It may emerge as a new clinical tool to assist with individualized management of rectal cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
anan完成签到,获得积分0
1秒前
ablat应助容棋采纳,获得10
1秒前
wwf完成签到,获得积分10
1秒前
1秒前
美好向日葵完成签到,获得积分10
2秒前
无极微光应助404采纳,获得20
2秒前
就离谱完成签到,获得积分10
2秒前
科研通AI6应助XIXI采纳,获得10
2秒前
万能图书馆应助卷儿w采纳,获得10
3秒前
3秒前
lv完成签到,获得积分10
4秒前
hysmoment完成签到,获得积分10
4秒前
怎么说发布了新的文献求助10
5秒前
17发布了新的文献求助10
6秒前
Zoraaawen发布了新的文献求助10
6秒前
Mayday完成签到,获得积分10
6秒前
zzz发布了新的文献求助10
7秒前
zxj发布了新的文献求助10
8秒前
iNk应助陈龙采纳,获得20
8秒前
ming发布了新的文献求助10
8秒前
科研通AI6应助hzauhzau采纳,获得10
8秒前
王丽丽发布了新的文献求助10
8秒前
asder发布了新的文献求助10
9秒前
英俊的铭应助李健采纳,获得10
10秒前
张小桐完成签到,获得积分10
10秒前
XIXI完成签到,获得积分10
10秒前
10秒前
10秒前
沉默的大白菜真实的钥匙完成签到,获得积分10
11秒前
WW完成签到,获得积分10
11秒前
彭于晏应助YYL采纳,获得10
11秒前
12秒前
Arthit完成签到 ,获得积分10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
一碗鱼发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446392
求助须知:如何正确求助?哪些是违规求助? 4555440
关于积分的说明 14251682
捐赠科研通 4477908
什么是DOI,文献DOI怎么找? 2453417
邀请新用户注册赠送积分活动 1444174
关于科研通互助平台的介绍 1420200