Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge- and data-driven method

噪音(视频) 计算机科学 音质 残余物 人工神经网络 交通噪声 电动汽车 汽车工程 人工智能 降噪 工程类 算法 语音识别 物理 图像(数学) 功率(物理) 量子力学
作者
Haibo Huang,Teik C. Lim,Jiuhui Wu,Weiping Ding,Jian Pang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:197: 110361-110361 被引量:32
标识
DOI:10.1016/j.ymssp.2023.110361
摘要

With the promotion of pure electric vehicles (PEVs), the overall interior noise level has been gradually reduced. Tire/road noise is increasingly becoming noticeable in PEVs and represents a primary concern for passengers. Vehicle acoustic packages are crucial for suppressing tire/road noise, and numerous studies have focused on improving the acoustic package performance and sound quality of tire/road noise. However, the prediction and optimization of tire/road acoustic comfort have two deficiencies: (1) The characteristics and transfer paths of tire/road noise are complex. Using knowledge-driven methods (such as simulation models) and data-driven methods (such as neural networks) for analysis has difficulty in accuracy parameter acquisition and unexplainable models. (2) The sound quality of tire/road noise is multidimensional. In the development of multitarget prediction models, when multiple targets contradict each other, prediction bias may result from wide differences among targets in the gradient value of the loss function in training. Therefore, in this paper, a knowledge- and data-driven method is proposed, which introduces the knowledge graph technique to develop a vehicle tire/road noise knowledge graph architecture and uses an improved residual network to drive reasoning in the domain knowledge graph. In addition, a multitarget prediction method based on the adaptive balanced learning mechanism for a residual network is proposed, which uses the dynamic weighted average method to adaptively adjust the loss weight of each target according to the convergence speed and learning difficulty of each target. The proposed dual-drive method is applied to predict and optimize the performance of vehicle acoustic package and to further improve the multiple sound quality metrics of tire/road noise. In the experimental validation, the proposed method outperforms the traditional prediction and optimization methods in effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南兮发布了新的文献求助10
刚刚
秋秋完成签到,获得积分10
1秒前
Ethan发布了新的文献求助10
2秒前
西安浴日光能赵炜完成签到,获得积分10
2秒前
韩夏菲发布了新的文献求助10
2秒前
3秒前
啦啦啦完成签到,获得积分10
4秒前
斯文败类应助灯火采纳,获得10
5秒前
qq完成签到,获得积分10
5秒前
manan发布了新的文献求助10
5秒前
kkj发布了新的文献求助10
6秒前
科目三应助punchline采纳,获得10
6秒前
Ethan完成签到,获得积分10
7秒前
乐乐应助汤飞柏采纳,获得10
7秒前
8秒前
zhanlang发布了新的文献求助10
8秒前
9秒前
充电宝应助剑影采纳,获得10
9秒前
王振有完成签到,获得积分10
10秒前
10秒前
11秒前
会飞的猪完成签到 ,获得积分10
11秒前
小马甲应助小鱼采纳,获得10
11秒前
流砂完成签到,获得积分10
12秒前
天天快乐应助唐禹嘉采纳,获得10
12秒前
犹豫帆布鞋完成签到,获得积分20
14秒前
agui发布了新的文献求助10
14秒前
xxxqqq完成签到,获得积分10
14秒前
科研通AI5应助谨慎寄松采纳,获得10
14秒前
15秒前
Zoey发布了新的文献求助10
16秒前
16秒前
16秒前
追寻锦程完成签到,获得积分10
17秒前
17秒前
宝拉~完成签到,获得积分10
17秒前
天天快乐应助风趣夜云采纳,获得10
18秒前
18秒前
六清完成签到,获得积分10
18秒前
科研通AI5应助我爱背单词采纳,获得10
20秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Building Trust: Overcoming Suspicion in International Conflict 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825982
求助须知:如何正确求助?哪些是违规求助? 3368267
关于积分的说明 10450191
捐赠科研通 3087810
什么是DOI,文献DOI怎么找? 1698813
邀请新用户注册赠送积分活动 817107
科研通“疑难数据库(出版商)”最低求助积分说明 770039