钝化
原子层沉积
化学吸附
硅烷
硅烷
成核
沉积(地质)
化学
吸附
表面改性
分子
化学工程
图层(电子)
红外光谱学
傅里叶变换红外光谱
硅烷化
材料科学
光化学
无机化学
物理化学
有机化学
工程类
古生物学
生物
沉积物
作者
Jan‐Willem J. Clerix,Golnaz Dianat,Annelies Delabie,Gregory N. Parsons
出处
期刊:Journal of vacuum science & technology
[American Vacuum Society]
日期:2023-03-30
卷期号:41 (3)
被引量:7
摘要
Small-molecule inhibitors have recently been introduced for passivation during area-selective deposition (ASD). Small silanes like (N,N-dimethylamino)trimethylsilane (DMATMS) selectively react with −OH sites on SiO2 to form a less reactive –OSi(CH3)3 terminated surface. The –OSi(CH3)3 surface termination can inhibit many atomic layer deposition (ALD) processes, including TiCl4/H2O ALD. However, the mechanisms by which ALD is inhibited and by which selectivity is eventually lost are not well understood. This study uses in situ Fourier-transform infrared spectroscopy to probe the adsorption of DMATMS on SiO2 and the subsequent reactions when the passivated surface is exposed to TiCl4/H2O ALD. The chemisorption of DMATMS on isolated –OH groups on SiO2 is shown to inhibit the reaction with TiCl4. Further, we find that starting with an inherently inhibiting H-terminated Si surface, DMATMS can also react with residual –OH groups and reduce the extent of nucleation. Finally, using Rutherford backscattering spectrometry, the effectiveness of DMATMS passivation on SiO2 and H-terminated Si is quantified during extended ALD cycle numbers. The insight into the mechanisms of passivation by DMATMS and passivation loss can enable the rational design of highly selective ASD processes by carefully matching compatible surfaces, passivating agents, and ALD precursors.
科研通智能强力驱动
Strongly Powered by AbleSci AI