PROMISE: A pre-trained knowledge-infused multimodal representation learning framework for medication recommendation

代表(政治) 计算机科学 人工智能 自然语言处理 政治学 政治 法学
作者
Jialun Wu,Xin‐Yao Yu,Kai He,Zeyu Gao,Tieliang Gong
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (4): 103758-103758 被引量:2
标识
DOI:10.1016/j.ipm.2024.103758
摘要

Electronic Health Records (EHRs) significantly enhance clinical decision-making, particularly in safe and effective medication recommendation based on complex patient data. Current methods, while encoding each medical event individually with domain-specific knowledge, inadequately harness multi-source domain knowledge and neglect the interrelations among various medical codes, the influence of historical patient visits, and the relevance of similar patient trajectories. To address these limitations, we present PROMISE, a multimodal medication recommendation framework that progressively learns patient representations from specific health states to a comprehensive view. PROMISE integrates domain knowledge into modality-specific encoders to improve local and global patient representations, facilitating enhanced medication recommendations through the interaction of patient representations from various modalities. Specifically, within the code modality, PROMISE utilizes encoding of EHR hypergraphs to learn patient representations featuring structured information. Simultaneously, in the text modality, it acquires patient representations with semantic information by encoding clinical texts obtained from tables. Our framework surpasses state-of-the-art baselines with up to 2.06% and 1.97% improvements on key metrics within the MIMIC-III and IV datasets, respectively, confirming its effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zlzlzl发布了新的文献求助10
1秒前
SYLH应助zzz采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
飞飞完成签到,获得积分10
3秒前
田様应助背后友蕊采纳,获得10
4秒前
6秒前
lq发布了新的文献求助10
7秒前
zhs发布了新的文献求助10
7秒前
白杨木影子被拉长完成签到,获得积分10
8秒前
梁宽发布了新的文献求助10
8秒前
田様应助LRRAM_809采纳,获得10
8秒前
9秒前
鱼鳞飞飞完成签到,获得积分20
9秒前
XYYX发布了新的文献求助10
9秒前
9秒前
慕青应助zhan采纳,获得10
10秒前
Wri发布了新的文献求助10
10秒前
研友_VZG7GZ应助Yxian采纳,获得10
12秒前
13秒前
14秒前
zhan完成签到,获得积分10
15秒前
15秒前
Yuu发布了新的文献求助10
16秒前
16秒前
123发布了新的文献求助10
16秒前
LH完成签到,获得积分10
16秒前
一期一会完成签到,获得积分10
18秒前
18秒前
18秒前
栀晴完成签到 ,获得积分10
19秒前
晨曦完成签到,获得积分10
19秒前
背后友蕊发布了新的文献求助10
19秒前
一只小羊发布了新的文献求助10
20秒前
沐风发布了新的文献求助10
20秒前
degre完成签到,获得积分10
21秒前
21秒前
SciGPT应助XYYX采纳,获得10
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836508
求助须知:如何正确求助?哪些是违规求助? 3378791
关于积分的说明 10506129
捐赠科研通 3098486
什么是DOI,文献DOI怎么找? 1706518
邀请新用户注册赠送积分活动 821062
科研通“疑难数据库(出版商)”最低求助积分说明 772431