事后诸葛亮
地缘政治学
计算机科学
点(几何)
索引(排版)
集合(抽象数据类型)
鉴定(生物学)
人工智能
自然语言处理
语言模型
政治
数学
心理学
认知心理学
政治学
万维网
植物
生物
程序设计语言
法学
几何学
作者
Matthias Apel,André Betzer,Bernd Scherer
出处
期刊:The journal of financial data science
[Pageant Media US]
日期:2022-12-14
卷期号:5 (1): 65-75
标识
DOI:10.3905/jfds.2022.1.113
摘要
In this article, the authors show how to build a real-time geopolitical risk index from news data using textual analysis. The presented method defines a point-in-time dictionary of terms related to political tension. It does not rely on the in-sample definition of a set of n-grams that are likely chosen and updated with hindsight bias. The proposed model can be applied to any topic and is language agnostic. Only a few topic-related words are required to initialize the buildup of a dynamically self-adjusting dictionary. The authors show that their approach can resemble the results of other more supervised methods. The findings indicate how topic identification and news index construction may benefit from a time-dependent dictionary generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI