SYSTEM SPECIFIC AGING SCORES: A STATE OF THE ART AGING CLOCK BUILT USING AGING SCORES FROM DIFFERENT BODILY FUNCTIONS

表观遗传学 DNA甲基化 脑老化 德纳姆 生物钟 健康衰老 认知 生物 生物信息学 计算生物学 神经科学 医学 昼夜节律 老年学 遗传学 基因 基因表达
作者
Raghav Sehgal,Albert Higgins‐Chen,Margarita Meer,Morgan E. Levine
出处
期刊:Innovation in Aging [University of Oxford]
卷期号:6 (Supplement_1): 20-21 被引量:1
标识
DOI:10.1093/geroni/igac059.076
摘要

Abstract Aging is a highly heterogeneous process at multiple levels. Different individuals, organs, tissues, and cell types are innately diverse and age in quantitatively different manners. Epigenetic clocks have been developed to capture overall degree of aging and typically report a single biological age value. However, single measures fail to provide insight into differential aging across organ systems. Our aim was to develop novel systems-specific methylation clocks, that when assessed in blood, capture distinct aging subtypes. We utilized three large human cohort studies and employed both supervised and unsupervised machine learning models by linking DNA methylation to lower dimensional vectors composed of system specific clinical chemistry and functional assays. In doing so, we were able to develop 11 unique system-specific scores–heart, lung, kidney, liver, brain, immune, inflammatory, hematopoietic, musculoskeletal, hormone, and metabolic. We observe that in independent data, the specific systems relate to meaningful outcomes–for instance the brain score is strongly associated with cognitive functioning; musculoskeletal score is strongly associated with physical functioning; and the lung score is strongly associated with lung cancer. Additionally, system scores and the composite systems clock outperforms presently available clocks in terms of associations with a wide variety of aging phenotypes and conditions. Overall, our biological systems based epigenetic clock outperforms presently available epigenetic aging clocks and provides meaningful insights into heterogeneity in aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maguodrgon发布了新的文献求助30
刚刚
刚刚
4秒前
4秒前
思源应助得過且過采纳,获得10
4秒前
5秒前
xia发布了新的文献求助30
6秒前
HarrisonChan发布了新的文献求助10
6秒前
英俊的铭应助舒适的书雪采纳,获得10
6秒前
pluto应助储物间采纳,获得10
7秒前
QI发布了新的文献求助20
8秒前
赵小坤堃发布了新的文献求助10
10秒前
10秒前
Akim应助M95采纳,获得10
10秒前
执着期待完成签到 ,获得积分10
11秒前
旧辞完成签到,获得积分10
13秒前
13秒前
14秒前
肥波完成签到,获得积分10
16秒前
布吉岛完成签到 ,获得积分10
16秒前
optical_magic完成签到,获得积分10
17秒前
小鲨鱼发布了新的文献求助10
17秒前
繁星发布了新的文献求助10
18秒前
着急的青枫应助月军采纳,获得10
19秒前
情怀应助dpcrel采纳,获得10
20秒前
21秒前
24秒前
黄小北完成签到,获得积分10
25秒前
GAAO发布了新的文献求助10
26秒前
vc完成签到,获得积分10
26秒前
天晴色烟雨完成签到,获得积分10
27秒前
27秒前
asdzsx发布了新的文献求助10
29秒前
lianglimay完成签到,获得积分10
31秒前
Lmy发布了新的文献求助10
33秒前
Hour应助倪妮采纳,获得10
35秒前
小茵茵完成签到,获得积分10
36秒前
AlexLee完成签到,获得积分10
36秒前
37秒前
完美世界应助桑祥采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784872
求助须知:如何正确求助?哪些是违规求助? 4111950
关于积分的说明 12721074
捐赠科研通 3836708
什么是DOI,文献DOI怎么找? 2115432
邀请新用户注册赠送积分活动 1138394
关于科研通互助平台的介绍 1024526