炎症体
纤维化
肿瘤坏死因子α
肝纤维化
肿瘤坏死因子α
炎症
医学
半胱氨酸蛋白酶1
肝损伤
白细胞介素
白细胞介素6
白细胞介素1β
免疫学
细胞因子
内科学
病理
作者
Alexander Wree,Matthew D. McGeough,María Eugenia Inzaugarat,Akiko Eguchi,Susanne Schuster,Casey D. Johnson,Carla A. Peña,Lukas Geisler,Bettina G. Papouchado,Hal M. Hoffman,Ariel E. Feldstein
出处
期刊:Hepatology
[Wiley]
日期:2017-09-13
卷期号:67 (2): 736-749
被引量:255
摘要
The NLRP3 inflammasome, a caspase‐1 activation platform, plays a key role in the modulation of liver inflammation and fibrosis. Here, we tested the hypothesis that interleukin 17 (IL‐17) and tumor necrosis factor (TNF) are key cytokines involved in amplifying and perpetuating the liver damage and fibrosis resulting from NLRP3 activation. To address this hypothesis, gain‐of‐function Nlrp3 A350V knock‐in mice were bred onto il17a and Tnf knockout backgrounds allowing for constitutive Nlrp3 activation in myeloid derived cells in mice deficient in IL‐17 or TNF. Livers of Nlrp3 A350V knock‐in mice exhibited severe liver inflammatory changes characterized by infiltration with neutrophils, increased expression of chemokine (C‐X‐C motif) ligand (CXCL) 1 and CXCL2 chemokines, activated inflammatory macrophages, and elevated levels of IL‐17 and TNF. Mutants with ablation of il17a signal showed fewer neutrophils when compared to intact Nlrp3 A350V mutants, but still significant inflammatory changes when compared to the nonmutant il17a knockout littermates. The severe inflammatory changes associated with mutant Nlrp3 were almost completely rescued by Tnf knockout in association with a marked decrease in circulating IL‐1β levels. Intact Nlrp3 A350V mutants showed changes in liver fibrosis, as evidenced by morphometric quantitation of Sirius Red staining and increased mRNA levels of profibrotic genes, including connective tissue growth factor and tissue inhibitor of matrix metalloproteinase 1. Il17a lacking mutants exhibited amelioration of the aforementioned fibrosis, whereas Tnf ‐deficient mutants showed no signs of fibrosis when compared to littermate controls. Conclusion : Our study uncovers key roles for TNF and, to a lesser extent, IL‐17 as mediators of liver inflammation and fibrosis induced by constitutive NLRP3 inflammasome activation in myeloid‐derived cells. These findings may lead to therapeutic strategies aimed at halting the progression of liver injury and fibrogenesis in various liver pathogeneses driven by NLRP3 activation. (H epatology 2018;67:736‐749).
科研通智能强力驱动
Strongly Powered by AbleSci AI