Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation

光催化 异质结 材料科学 X射线光电子能谱 光降解 煅烧 带材弯曲 化学工程 兴奋剂 光化学 催化作用 可见光谱 纳米技术 光电子学 化学 有机化学 工程类
作者
Juan Wang,Guohong Wang,Bei Cheng,Jiaguo Yu,Jiajie Fan
出处
期刊:Chinese Journal of Catalysis [Elsevier BV]
卷期号:42 (1): 56-68 被引量:665
标识
DOI:10.1016/s1872-2067(20)63634-8
摘要

Constructing step-scheme (S-scheme) heterojunctions has been confirmed as a promising strategy for enhancing the photocatalytic activity of composite materials. In this work, a series of sulfur-doped g-C3N4 (SCN)/TiO2 S-scheme photocatalysts were synthesized using electrospinning and calcination methods. The as-prepared SCN/TiO2 composites showed superior photocatalytic performance than pure TiO2 and SCN in the photocatalytic degradation of Congo Red (CR) aqueous solution. The significant enhancement in photocatalytic activity benefited not only from the 1D well-distributed nanostructure, but also from the S-scheme heterojunction. Furthermore, the XPS analyses and DFT calculations demonstrated that electrons were transferred from SCN to TiO2 across the interface of the SCN/TiO2 composites. The built-in electric field, band edge bending, and Coulomb interaction synergistically facilitated the recombination of relatively useless electrons and holes in hybrid when the interface was irradiated by simulated solar light. Therefore, the remaining electrons and holes with higher reducibility and oxidizability endowed the composite with supreme redox ability. These results were adequately verified by radical trapping experiments, ESR tests, and in situ XPS analyses, suggesting that the electron immigration in the photocatalyst followed the S-scheme heterojunction mechanism. This work can enrich our knowledge of the design and fabrication of novel S-scheme heterojunction photocatalysts and provide a promising strategy for solving environmental pollution in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kyrene完成签到,获得积分10
1秒前
2秒前
4秒前
sstargazer发布了新的文献求助10
4秒前
俭朴凌青发布了新的文献求助10
4秒前
Jasper应助鑫淼采纳,获得10
5秒前
5秒前
JamesPei应助文静采纳,获得10
6秒前
cx完成签到,获得积分10
6秒前
6秒前
7秒前
Jasper应助23采纳,获得10
8秒前
老迟到的鬼神完成签到 ,获得积分10
9秒前
AAAAAA完成签到,获得积分10
9秒前
动听的问晴关注了科研通微信公众号
9秒前
64658应助尹不愁采纳,获得10
10秒前
11秒前
12秒前
12秒前
Yeong完成签到,获得积分10
12秒前
fanfan55完成签到,获得积分10
13秒前
16秒前
小李完成签到,获得积分10
16秒前
温柔樱桃完成签到 ,获得积分10
17秒前
赘婿应助正常采纳,获得10
17秒前
文静发布了新的文献求助10
18秒前
yt发布了新的文献求助10
18秒前
18秒前
小时完成签到,获得积分10
19秒前
清脆映梦发布了新的文献求助30
20秒前
21秒前
22秒前
SciGPT应助善良的半仙采纳,获得10
23秒前
23秒前
晨曦微露完成签到,获得积分10
23秒前
万能图书馆应助shanshan__采纳,获得30
24秒前
26秒前
lumion11发布了新的文献求助10
26秒前
26秒前
9charming完成签到,获得积分10
26秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978255
求助须知:如何正确求助?哪些是违规求助? 4231265
关于积分的说明 13178938
捐赠科研通 4022032
什么是DOI,文献DOI怎么找? 2200547
邀请新用户注册赠送积分活动 1213008
关于科研通互助平台的介绍 1129272