Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium–cobalt catalysts for benzene oxidation

双金属片 无机化学 化学 过渡金属 铂金 金属 贵金属
作者
Zhiquan Hou,Lingyun Dai,Yuxi Liu,Jiguang Deng,Lin Jing,Wenbo Pei,Gao Ruyi,Yuan Feng,Hongxing Dai
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:285: 119844- 被引量:13
标识
DOI:10.1016/j.apcatb.2020.119844
摘要

Abstract Catalytic oxidation is one of the effective pathways for completely eliminating volatile organic compounds (VOCs) emitted from industrial and transportation activities. Meanwhile, single-atom catalysts have excellent application prospects in numerous reactions due to their high metal atomic utilization efficiency. In this work, we adopted a novel strategy to prepare an active Pd/Co single-atom catalyst (i.e., Pd1Co1/Al2O3) for benzene oxidation. The successful formation of the atomically dispersed palladium and cobalt species on Al2O3 was verified by the aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure. By the in situ temperature-programmed techniques and in situ diffuse reflectance Fourier transform infrared spectroscopy, we observed a double effect of the palladium and cobalt oxide active sites, resulting in an enhanced performance for benzene oxidation. A benzene conversion of 90 % was achieved over the Pd1Co1/Al2O3 catalyst at 250 °C and a space velocity of 40,000 mL/(g h). Interestingly, the catalyst also possessed enhanced sulfur resistance performance. The good regeneration ability of the active sites in the catalyst was due to the single-atom dispersion of Pd and Co. In addition, we deduce that benzene oxidation might occur over Pd1Co1/Al2O3 via a pathway of benzene → cyclohexadiene → phenol → quinone → maleate → acetate → CO2 and H2O. We believe that the obtained results can provide a useful idea for rationally designing the double active site single-atom catalysts and understanding the mechanism of VOCs oxidation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sepvvvvirtue发布了新的文献求助10
刚刚
叡叡发布了新的文献求助10
1秒前
4秒前
4秒前
香蕉觅云应助qiuqiuqiuqiu采纳,获得10
4秒前
无钱发布了新的文献求助10
5秒前
姜恒完成签到,获得积分10
5秒前
5秒前
小小咸鱼完成签到 ,获得积分10
6秒前
Akim应助嘎嘎的鸡神采纳,获得10
7秒前
阿德利企鹅完成签到 ,获得积分10
7秒前
陈斯航发布了新的文献求助10
8秒前
8秒前
mika完成签到,获得积分10
8秒前
12完成签到,获得积分20
8秒前
8秒前
9秒前
金条完成签到,获得积分10
9秒前
顺利的蘑菇完成签到 ,获得积分10
10秒前
10秒前
青菜完成签到,获得积分10
10秒前
11秒前
cherlie完成签到,获得积分0
12秒前
苏锦霖发布了新的文献求助10
12秒前
Jiang完成签到,获得积分10
13秒前
共享精神应助Sepvvvvirtue采纳,获得10
13秒前
13秒前
Aha完成签到 ,获得积分10
14秒前
雾霭迷茫发布了新的文献求助10
15秒前
15秒前
ll发布了新的文献求助10
15秒前
Jeri完成签到 ,获得积分10
15秒前
zmn完成签到,获得积分10
16秒前
16秒前
ZZY发布了新的文献求助10
16秒前
长安完成签到,获得积分10
17秒前
17秒前
胡燕完成签到 ,获得积分10
17秒前
小闵完成签到,获得积分10
17秒前
王金铭完成签到,获得积分10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5140956
求助须知:如何正确求助?哪些是违规求助? 4339406
关于积分的说明 13515190
捐赠科研通 4179052
什么是DOI,文献DOI怎么找? 2291550
邀请新用户注册赠送积分活动 1292241
关于科研通互助平台的介绍 1234614