Joint Server Selection, Cooperative Offloading and Handover in Multi-access Edge Computing Wireless Network: A Deep Reinforcement Learning Approach

计算机科学 服务器 移动边缘计算 计算卸载 强化学习 无线网络 移交 计算机网络 分布式计算 边缘计算 无线 GSM演进的增强数据速率 人工智能 电信
作者
Tai Manh Ho,Kim Khoa Nguyen
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-1 被引量:74
标识
DOI:10.1109/tmc.2020.3043736
摘要

Multi-access edge computing (MEC) is the key enabling technology that supports compute-intensive applications in 5G networks. By deploying powerful servers at the edge of wireless networks, MEC can extend the computational capacity of the mobile devices by migrating compute-intensive tasks to the MEC servers. In this paper, we consider a multi-user MEC wireless network in which multiple mobile devices can associate and perform computation offloading via wireless channels to MEC servers attached to the base stations (BSs). The decision whether the computation task is executed locally at the user device or to be offloaded for MEC server execution should be adaptive to the time-varying network dynamics. Taking into account the dynamic of the environment, we propose a deep reinforcement learning (DRL) based approach to solve the formulated nonconvex problem of minimizing computation cost in terms of total delay. However, real-world networks tend to have a large number of users and MEC servers involving large numbers of different actions (continuous and discrete), where evaluating the combination of every possible action becomes impractical. Therefore, conventional DRL methods may be difficult or even impossible to directly apply to the proposed model. Based on the recursive decomposition of the action space available to each state, we propose a DRL-based algorithm for joint server selection, cooperative offloading, and handover in a multi-access edge wireless network. Numerical results show that the proposed DRL based algorithm significantly outperforms the traditional Q-learning method and local computation in terms of task success rate and total delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助动听凌柏采纳,获得10
刚刚
陈睿完成签到,获得积分10
刚刚
浮游应助朝气采纳,获得10
刚刚
Cindy发布了新的文献求助10
刚刚
1秒前
An完成签到,获得积分10
1秒前
小二郎应助陶醉的青荷采纳,获得10
2秒前
2秒前
思源应助花南星采纳,获得10
3秒前
丘比特应助脑残骑士老张采纳,获得10
3秒前
青竹发布了新的文献求助20
4秒前
111发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
在水一方应助jun采纳,获得20
5秒前
糊涂的剑发布了新的文献求助10
5秒前
5秒前
wt200001发布了新的文献求助10
5秒前
辛勤的乌完成签到,获得积分10
6秒前
常紊完成签到 ,获得积分10
6秒前
科研通AI6应助Sharon采纳,获得20
6秒前
奔跑的斌哥完成签到,获得积分10
6秒前
shadow完成签到,获得积分10
7秒前
稳重的煎蛋完成签到,获得积分20
7秒前
Baoyuan_Zhu发布了新的文献求助10
8秒前
充电宝应助细心蚂蚁采纳,获得10
8秒前
诚心文博完成签到,获得积分10
8秒前
8R60d8应助Zoeyyy采纳,获得10
9秒前
Zoe发布了新的文献求助10
10秒前
kls发布了新的文献求助10
10秒前
11秒前
SSDlk完成签到,获得积分10
11秒前
11秒前
仙兮熙发布了新的文献求助10
11秒前
哈哈哈哈完成签到 ,获得积分10
11秒前
12秒前
13秒前
往前冲发布了新的文献求助10
13秒前
辛勤香岚应助糊涂的剑采纳,获得10
13秒前
专注的觅云完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Jurisprudence in the Mirror: The Common Law World Meets the Civil Law World 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4659913
求助须知:如何正确求助?哪些是违规求助? 4043417
关于积分的说明 12506290
捐赠科研通 3735419
什么是DOI,文献DOI怎么找? 2062366
邀请新用户注册赠送积分活动 1092284
科研通“疑难数据库(出版商)”最低求助积分说明 973138