Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures

计算机科学 粒度 分拆(数论) 分布式计算 利用 对称多处理机系统 多核处理器 任务(项目管理) 共享资源 计算 并行计算 计算机体系结构 计算机网络 组合数学 管理 经济 操作系统 计算机安全 数学 算法
作者
Peng Zhang,Jianbin Fang,Canqun Yang,Chun Huang,Tao Tang,Zheng Wang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 1878-1896 被引量:16
标识
DOI:10.1109/tpds.2020.2978045
摘要

As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel application to make effective use of all available resources. An effective way of improving hardware utilization is to exploit spatial and temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks - a strategy known as heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it. We achieve this by first learning a predictive model offline using training programs. The learned model can then be used to predict the performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively. These results translate to over 93 percent of the performance delivered by a theoretically perfect predictor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健春发布了新的文献求助10
1秒前
无糖零脂完成签到,获得积分10
1秒前
liu bo完成签到,获得积分10
1秒前
kk完成签到,获得积分10
1秒前
Cai完成签到,获得积分10
2秒前
小何完成签到 ,获得积分10
2秒前
2秒前
山海完成签到,获得积分10
2秒前
科研通AI5应助威武的万仇采纳,获得30
2秒前
Elijah完成签到 ,获得积分10
3秒前
3秒前
CC发布了新的文献求助10
3秒前
科研通AI5应助开放的水壶采纳,获得10
3秒前
啦啦发布了新的文献求助10
3秒前
不苦完成签到,获得积分10
4秒前
CAST1347发布了新的文献求助10
5秒前
晚云烟月完成签到,获得积分10
5秒前
5秒前
东尼完成签到 ,获得积分10
6秒前
6秒前
LYSnow7完成签到 ,获得积分10
6秒前
daoketuo完成签到,获得积分10
6秒前
大大大大管子完成签到 ,获得积分10
7秒前
饭老师完成签到,获得积分10
7秒前
99完成签到,获得积分10
8秒前
zhangmw发布了新的文献求助10
8秒前
轻风完成签到,获得积分10
8秒前
东方诩发布了新的文献求助10
9秒前
djt关注了科研通微信公众号
10秒前
10秒前
大吴克发布了新的文献求助10
11秒前
科研助理完成签到 ,获得积分10
11秒前
Sam发布了新的文献求助10
12秒前
lalalala完成签到,获得积分10
12秒前
CC完成签到,获得积分10
12秒前
亓灬完成签到,获得积分10
13秒前
errui完成签到,获得积分10
13秒前
Angel完成签到 ,获得积分10
13秒前
selena完成签到,获得积分10
13秒前
honey完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816043
求助须知:如何正确求助?哪些是违规求助? 3359640
关于积分的说明 10403733
捐赠科研通 3077466
什么是DOI,文献DOI怎么找? 1690304
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781