催化作用
法拉第效率
甲醇
极化(电化学)
电子转移
材料科学
化学能
化学
电流密度
密度泛函理论
无机化学
化学工程
一氧化碳
分子
浓差极化
电化学
能量转换效率
可再生能源
功率密度
电催化剂
光化学
合成气
电子
氧化还原
作者
Guodong Sun,Y. M.,Yanan Cao,Hsiao‐Tsu Wang,Deqing Li,Mengchen Sun,Chi‐Feng Lee,C. H. HSU,Ying‐Rui Lu,Wei Zhang,Lili Han
标识
DOI:10.1002/anie.202523844
摘要
ABSTRACT Catalysis of the conversion of CO 2 from industrial exhaust gases to methanol at dynamically varying concentrations using renewable electrical energy is crucial for reducing CO 2 emissions and producing valuable chemical feedstocks. However, the challenges associated with the weak activation of linear nonpolar CO 2 molecules and the high energy difference of key proton‐coupled electron transfer steps make it difficult for existing catalysts to simultaneously achieve a high current density and a high selectivity. Herein, we report a strategy for regulating electron polarization in a Cu single‐atom catalyst (CuN 3 ‐C) to achieve efficient electrocatalytic reduction of high‐ and low‐concentration CO 2 to CH 3 OH. For both high‐concentration or low‐concentration CO 2 used as the feedstock, the CuN 3 ‐C catalyst achieves a current density exceeding −450 mA cm −2 , a Faradaic efficiency of 80% for methanol production, and record‐high production rate of 0.57 µmol s −1 cm −2 . In situ characterization and theoretical calculations jointly show that strong electron polarization of the CuN 3 ‐C catalyst facilitates more effective CO 2 activation and preferential *CO hydrogenation toward *CHO and *CHOH. This study provides a strategy for designing highly efficient catalysts for the conversion of CO 2 to methanol via electronic polarization modulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI