乙酰丙酸
选择性
催化作用
浸出(土壤学)
化学
法拉第效率
化学工程
无机化学
材料科学
金属
协同催化
电化学
石墨烯
钯
氢
铂金
电催化剂
核化学
过渡金属
纳米技术
活化能
多相催化
作者
Pol Vilariño,Jordi Rigual‐Miret,Ghulam Farid,Stefanos Chaitoglou,Roger Amade,Elvira Gómez,Albert Serra
出处
期刊:Chemsuschem
[Wiley]
日期:2025-11-25
卷期号:: e202502403-e202502403
标识
DOI:10.1002/cssc.202502403
摘要
Temperature‐modulated electrocatalytic hydrogenation of levulinic acid (LA) to γ‐valerolactone (GVL) or 4‐hydroxyvaleric acid (HVA) was investigated over CuNi and CuNiRu catalysts electrodeposited onto vertically aligned graphene nanowalls. Systematic potential (–1.6 to –2.0 V vs. Ag|AgCl) and temperature (5°C–50°C) studies revealed a clear product switch: at 5°C all catalysts showed > 95% selectivity to HVA, whereas at 50°C GVL dominated. Among the compositional configurations, trimetallic CuNiRu (50 mC cm −2 ) achieved the highest performance, affording 96.6% LA conversion, 92.4% GVL yield, and 98.5% selectivity at 50°C with minimal Ru loading. The synergy between Ru sites (promoting hydrogen activation and lactonization) and the high‐roughness nanowall scaffold suppressed H 2 evolution, minimized metal leaching (<1%), and delivered stable operation under ambient pressure. The system maintained performance over multiple cycles and preserved selectivity even under concentrated LA solutions, confirming architectural robustness. Faradaic efficiencies up to 89%, low energy consumption (~0.12 kWh mol −1 ), and energy storage efficiencies > 70% underscore the viability of this system for direct electricity‐to‐fuel conversion. These temperature–potential insights establish a tuneable platform where low‐temperature operation yields HVA, whereas moderate temperatures (50°C) enable near‐quantitative GVL production.
科研通智能强力驱动
Strongly Powered by AbleSci AI