催化作用
过电位
化学
电解水
继电器
钌
硼
格式化
铱
协同催化
光化学
无机化学
电解
化学工程
分解水
掺杂剂
羟基自由基
膜
析氧
多相催化
材料科学
氧化还原
锰
化学稳定性
双功能
质子交换膜燃料电池
纳米技术
作者
Haolei Zhang,Moxing Cheng,Chenwei Wang,Yichao Lin,Yin'an Zhu,Linjuan Zhang,Xiao Huang,Luming Peng,Ziqi Tian,Liang Chen
出处
期刊:Nano Letters
[American Chemical Society]
日期:2025-11-12
卷期号:25 (47): 16717-16724
标识
DOI:10.1021/acs.nanolett.5c04491
摘要
Ruthenium (Ru) is a promising iridium (Ir) alternative for proton exchange membrane water electrolysis (PEMWE), but Ru-based catalysts face an OER stability issue in acidic conditions. We addressed this using a hydroxyl relay strategy on RuO2 surfaces via boron (B) doping. The three-coordinate B sites with empty p orbitals readily form coordination bonds with hydroxyl groups. These B sites relay *OH to neighboring Ru sites, facilitating the formation of the OOH intermediate, lowering the OER energy barrier, and preventing Ru overoxidation. Furthermore, the B dopants create a robust B-O-Ru local structure, which significantly stabilizes the catalyst framework. Consequently, the B-doped RuO2 nanosheets (B-RuO2 NS) show an ultralow overpotential (190 mV at 10 mA cm-2) and exceptional stability (1600 h at 10 mA cm-2, 200 h at 1 A cm-2). This work demonstrates how targeted hydroxyl relay engineering can simultaneously enhance activity and stability, offering a viable pathway to develop high-performance and durable Ru catalysts for industrial PEMWE applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI