计算生物学
肽
聚类分析
蛋白质组学
稳健性(进化)
计算机科学
定量蛋白质组学
生物
生物信息学
数据挖掘
化学
生物化学
氨基酸
星团(航天器)
蛋白质组
肽序列
生物标志物
氨基酸残基
蛋白质降解
蛋白质水解
蛋白水解酶
作者
Na Li,Yaxin Zhu,Yumeng Yan,Jifeng Wang,Lili Niu,Ding Xiang,Mengmeng Zhang,Zhen-sheng Xie,Tan-xi Cai,Xiaojing Guo,Xiaojing Guo,Jianming Luo,Peng An,Xiangqian Guo,Xiangqian Guo,Fuquan Yang
标识
DOI:10.1002/advs.202510910
摘要
Abstract Mass spectrometry‐based peptidomics provides a comprehensive platform for mapping global proteolytic alterations and identifying disease biomarkers. However, existing analytical frameworks often lack the precision to capture disease‐specific signatures. Here, a single‐position peptide clustering strategy is introduced, leveraging the amino acid score (aa‐score) method, and applying it to plasma peptidomics in β‐thalassemia. By integrating grouped aa‐scores with tailored visualization, a clear and interpretable profile of protein degradation is generated from otherwise redundant datasets. Importantly, the use of heavy‐labeled peptides or reference samples in targeted quantitative peptidomics enabled, for the first time, the proposal of aa position‐based peptide cluster biomarkers. Combined with proteomics and complementary analyses, this strategy revealed disease‐specific peptide‐protein‐protease relationships. Furthermore, the robustness of the aa‐score framework is demonstrated by applying an individualized algorithm based on reference samples in an independent cohort study, highlighting its capacity to address missing values and improve overall performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI