Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification

脑电图 人工智能 可解释性 卷积神经网络 计算机科学 模式识别(心理学) 张量(固有定义) 深度学习 可视化 协方差 机器学习 数学 心理学 神经科学 统计 纯数学
作者
Ce Ju,Cuntai Guan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10955-10969 被引量:8
标识
DOI:10.1109/tnnls.2022.3172108
摘要

Deep learning (DL) has been widely investigated in a vast majority of applications in electroencephalography (EEG)-based brain-computer interfaces (BCIs), especially for motor imagery (MI) classification in the past five years. The mainstream DL methodology for the MI-EEG classification exploits the temporospatial patterns of EEG signals using convolutional neural networks (CNNs), which have been particularly successful in visual images. However, since the statistical characteristics of visual images depart radically from EEG signals, a natural question arises whether an alternative network architecture exists apart from CNNs. To address this question, we propose a novel geometric DL (GDL) framework called Tensor-CSPNet, which characterizes spatial covariance matrices derived from EEG signals on symmetric positive definite (SPD) manifolds and fully captures the temporospatiofrequency patterns using existing deep neural networks on SPD manifolds, integrating with experiences from many successful MI-EEG classifiers to optimize the framework. In the experiments, Tensor-CSPNet attains or slightly outperforms the current state-of-the-art performance on the cross-validation and holdout scenarios in two commonly used MI-EEG datasets. Moreover, the visualization and interpretability analyses also exhibit the validity of Tensor-CSPNet for the MI-EEG classification. To conclude, in this study, we provide a feasible answer to the question by generalizing the DL methodologies on SPD manifolds, which indicates the start of a specific GDL methodology for the MI-EEG classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangerer发布了新的文献求助20
刚刚
田様应助MY采纳,获得50
刚刚
ding应助结实的元槐采纳,获得10
4秒前
5秒前
7秒前
沈海完成签到,获得积分10
7秒前
8秒前
8秒前
科研通AI5应助yy采纳,获得10
9秒前
9秒前
10秒前
汉堡包应助专一的幻莲采纳,获得10
11秒前
13秒前
13秒前
14秒前
干净的烧鹅完成签到,获得积分10
15秒前
maox1aoxin应助徐小采纳,获得40
16秒前
16秒前
黄蛋黄发布了新的文献求助10
19秒前
无畏完成签到 ,获得积分10
19秒前
Ahiterin完成签到,获得积分10
20秒前
小蘑菇应助高兴的爆米花采纳,获得10
20秒前
shero发布了新的文献求助10
20秒前
大个应助云上人采纳,获得10
20秒前
21秒前
21秒前
宁宁完成签到,获得积分10
22秒前
22秒前
dora发布了新的文献求助10
25秒前
宁宁发布了新的文献求助10
26秒前
MY发布了新的文献求助50
27秒前
幽默的妍完成签到 ,获得积分10
27秒前
27秒前
黄蛋黄完成签到,获得积分10
27秒前
英勇笑萍完成签到,获得积分10
27秒前
27秒前
wangyaofeng完成签到,获得积分10
27秒前
28秒前
29秒前
这个文献你有么完成签到,获得积分10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812565
求助须知:如何正确求助?哪些是违规求助? 3357082
关于积分的说明 10385222
捐赠科研通 3074312
什么是DOI,文献DOI怎么找? 1688689
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986