Application of artificial intelligence in geotechnical engineering: A state-of-the-art review

岩土工程 岩土工程 山崩 土木工程 工程类 人工神经网络 土力学 液化 土壤水分 人工智能 地质学 计算机科学 土壤科学
作者
Abolfazl Baghbani,Tanveer Choudhury,Susanga Costa,Johannes Reiner
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:228: 103991-103991 被引量:198
标识
DOI:10.1016/j.earscirev.2022.103991
摘要

Geotechnical engineering deals with soils and rocks and their use in engineering constructions. By their nature, soils and rocks exhibit complex behaviours and a high level of uncertainty in material modelling. Artificial intelligence (AI) methods have been developed and used by an increasing number of researchers in the field of geotechnical engineering in the last three decades. These methods have been considered successful due to their ability to predict complex nonlinear relationships. Based on more than one thousand (i.e. 1235) published literatures, this paper presents a detailed review of the performance of AI methods and algorithms used in geotechnical engineering. Nine key areas where the application of AI methods is prominent were identified: frozen soils and soil thermal properties, rock mechanics, subgrade soil and pavements, landslide and soil liquefaction, slope stability, shallow and piles foundations, tunnelling and tunnel boring machine, dams, and unsaturated soils. Artificial Neural Network (ANN) emerged as the most widely used and preferred AI method with 52% of studies relying on it. Other methods that were used to a lesser extent were FIS, ANFIS, SVM, LSTM, CNN, ResNet and GAN. The analysis shows that the success and accuracy of AI applications depends on the number and type of datasets and selection of input parameters. The paper also provides statistical information on research incorporating AI methods and discusses the opportunities and challenges for future research and practical applications in geotechnical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娃娃鱼完成签到,获得积分10
刚刚
星星会开花完成签到,获得积分10
1秒前
1秒前
wqwq69完成签到,获得积分10
2秒前
yyy完成签到,获得积分10
2秒前
LeoD发布了新的文献求助10
2秒前
你在叫什么完成签到,获得积分10
2秒前
美少叔叔完成签到 ,获得积分10
2秒前
xiaozhejia完成签到,获得积分10
2秒前
guajiguaji发布了新的文献求助10
3秒前
chengya完成签到,获得积分10
3秒前
马东完成签到,获得积分10
3秒前
苗月月发布了新的文献求助10
4秒前
山丘发布了新的文献求助10
4秒前
研友_Z60NmL完成签到,获得积分10
4秒前
笨笨乘风完成签到,获得积分10
5秒前
小巧的柚子完成签到,获得积分10
5秒前
6秒前
李健应助科研鑫采纳,获得10
7秒前
lll完成签到 ,获得积分10
7秒前
科研通AI5应助Tomsen采纳,获得10
9秒前
9秒前
张渔歌完成签到,获得积分10
9秒前
大胆笑翠完成签到,获得积分10
10秒前
优秀傲松完成签到,获得积分10
10秒前
深情白风完成签到 ,获得积分10
10秒前
橘子的哈哈怪完成签到,获得积分10
11秒前
山丘完成签到,获得积分10
11秒前
小茵茵完成签到,获得积分10
11秒前
点墨完成签到 ,获得积分10
11秒前
12秒前
123完成签到,获得积分20
14秒前
SciGPT应助苹果骑士采纳,获得10
14秒前
细心的小懒虫完成签到,获得积分10
15秒前
凌志发布了新的文献求助10
15秒前
轻狂书生完成签到,获得积分10
15秒前
LIKE完成签到,获得积分10
15秒前
花海完成签到,获得积分10
15秒前
认真夜云完成签到,获得积分10
16秒前
忐忑的邑完成签到,获得积分10
16秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830625
求助须知:如何正确求助?哪些是违规求助? 3372936
关于积分的说明 10476177
捐赠科研通 3092895
什么是DOI,文献DOI怎么找? 1702300
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153