Unsupervised Machine Learning for Assessment of Left Ventricular Diastolic Function and Risk Stratification

医学 内科学 舒张期 心脏病学 射血分数 舒张功能 心力衰竭 舒张性心力衰竭 血压
作者
Chieh‐Ju Chao,Nahoko Kato,Christopher G. Scott,Francisco López-Jimenez,Grace Lin,Garvan C. Kane,Patricia A. Pellikka
出处
期刊:Journal of The American Society of Echocardiography [Elsevier]
卷期号:35 (12): 1214-1225.e8 被引量:22
标识
DOI:10.1016/j.echo.2022.06.013
摘要

The 2016 American Society of Echocardiography guidelines have been widely used to assess left ventricular diastolic function. However, limitations are present in the current classification system. The aim of this study was to develop a data-driven, unsupervised machine learning approach for diastolic function classification and risk stratification using the left ventricular diastolic function parameters recommended in the 2016 American Society of Echocardiography guidelines; the guideline grading was used as the reference standard.Baseline demographics, heart failure hospitalization, and all-cause mortality data were obtained for all adult patients who underwent transthoracic echocardiography at Mayo Clinic Rochester in 2015. Patients with prior mitral valve intervention, congenital heart disease, cardiac transplantation, or cardiac assist device implantation were excluded. Nine left ventricular diastolic function variables (mitral E- and A-wave peak velocities, E/A ratio, deceleration time, medial and lateral annular e' velocities and E/e' ratio, and tricuspid regurgitation peak velocity) were used for an unsupervised machine learning algorithm to identify different phenotype clusters. The cohort average of each variable was used for imputation. Patients were grouped according to the algorithm-determined clusters for Kaplan-Meier survival analysis.Among 24,414 patients (mean age, 63.6 ± 16.2 years), all-cause mortality occurred in 4,612 patients (18.9%) during a median follow-up period of 3.1 years. The algorithm determined three clusters with echocardiographic measurement characteristics corresponding to normal diastolic function (n = 8,312), impaired relaxation (n = 11,779), and increased filling pressure (n = 4,323), with 3-year cumulative mortality of 11.8%, 19.9%, and 33.4%, respectively (P < .0001). All 10,694 patients (43.8%) classified as indeterminate were reclassified into the three clusters (n = 3,324, n = 5,353, and n = 2,017, respectively), with 3-year mortality of 16.6%, 22.9%, and 34.4%, respectively. The clusters also outperformed guideline-based grade for prognostication (C index = 0.607 vs 0.582, P = .013).Unsupervised machine learning identified physiologically and prognostically distinct clusters on the basis of nine diastolic function Doppler variables. The clusters can be potentially applied in echocardiography laboratory practice and future clinical trials for simple, replicable diastolic function-related risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
爆米花应助昏睡的朝雪采纳,获得10
2秒前
西瓜刀发布了新的文献求助10
2秒前
流星噬月发布了新的文献求助10
3秒前
傻丢发布了新的文献求助10
4秒前
4秒前
5秒前
7秒前
8秒前
9秒前
11秒前
一一完成签到 ,获得积分10
11秒前
在水一方应助流星噬月采纳,获得10
13秒前
11发布了新的文献求助10
15秒前
16秒前
nkdailingyun发布了新的文献求助10
16秒前
852应助jon158采纳,获得10
17秒前
温暖寻琴完成签到 ,获得积分10
18秒前
善学以致用应助啊哈哈哈采纳,获得10
18秒前
18秒前
乐观的颦发布了新的文献求助10
22秒前
23秒前
科研通AI2S应助aabsd采纳,获得10
24秒前
左欣岳完成签到 ,获得积分10
24秒前
www发布了新的文献求助10
24秒前
vividkingking完成签到 ,获得积分10
24秒前
上官若男应助暴躁的豆芽采纳,获得10
26秒前
26秒前
悦耳的依风完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
shhoing应助SYY采纳,获得10
29秒前
30秒前
sonia完成签到,获得积分10
31秒前
SSSSHANDY发布了新的文献求助10
32秒前
希望完成签到 ,获得积分10
33秒前
可爱的函函应助www采纳,获得10
33秒前
34秒前
Harry应助慧海拾穗采纳,获得10
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073