Inferring Brain State Dynamics Underlying Naturalistic Stimuli Evoked Emotion Changes With dHA-HMM

悲伤 心理学 认知心理学 隐马尔可夫模型 认知 幸福 大脑活动与冥想 脑电图 神经科学 人工智能 计算机科学 愤怒 社会心理学 精神科
作者
Chenhao Tan,Xin Liu,Gaoyan Zhang
出处
期刊:Neuroinformatics [Springer Science+Business Media]
卷期号:20 (3): 737-753 被引量:11
标识
DOI:10.1007/s12021-022-09568-5
摘要

The brain functional mechanisms underlying emotional changes have been primarily studied based on the traditional task design with discrete and simple stimuli. However, the brain state transitions when exposed to continuous and naturalistic stimuli with rich affection variations remain poorly understood. This study proposes a dynamic hyperalignment algorithm (dHA) to functionally align the inter-subject neural activity. The hidden Markov model (HMM) was used to study how the brain dynamics responds to emotion during long-time movie-viewing activity. The results showed that dHA significantly improved inter-subject consistency and allowed more consistent temporal HMM states across participants. Afterward, grouping the emotions in a clustering dendrogram revealed a hierarchical grouping of the HMM states. Further emotional sensitivity and specificity analyses of ordered states revealed the most significant differences in happiness and sadness. We then compared the activation map in HMM states during happiness and sadness and found significant differences in the whole brain, but strong activation was observed during both in the superior temporal gyrus, which is related to the early process of emotional prosody processing. A comparison of the inter-network functional connections indicates unique functional connections of the memory retrieval and cognitive network with the cerebellum network during happiness. Moreover, the persistent bilateral connections among salience, cognitive, and sensorimotor networks during sadness may reflect the interaction between high-level cognitive networks and low-level sensory networks. The main results were verified by the second session of the dataset. All these findings enrich our understanding of the brain states related to emotional variation during naturalistic stimuli.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的中蓝完成签到 ,获得积分10
3秒前
opq856完成签到 ,获得积分10
5秒前
6秒前
石思炜完成签到,获得积分10
6秒前
DocZhao完成签到 ,获得积分10
7秒前
Sean完成签到,获得积分10
8秒前
蒲公英完成签到,获得积分10
13秒前
激昂的秀发完成签到,获得积分10
13秒前
祥子完成签到,获得积分10
13秒前
cdercder应助科研通管家采纳,获得30
22秒前
22秒前
清秀不言完成签到 ,获得积分10
23秒前
23秒前
YJ完成签到,获得积分10
27秒前
cis2014发布了新的文献求助10
27秒前
从容的水壶完成签到 ,获得积分10
29秒前
31秒前
32秒前
34秒前
Warming完成签到 ,获得积分10
35秒前
穆奕完成签到 ,获得积分10
35秒前
小鹿发布了新的文献求助10
35秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
36秒前
RaynorHank发布了新的文献求助10
37秒前
发量多的秃子完成签到,获得积分10
37秒前
翁雁丝完成签到 ,获得积分10
40秒前
个性仙人掌完成签到 ,获得积分10
44秒前
寂寞的诗云完成签到,获得积分10
48秒前
49秒前
Lj完成签到,获得积分10
51秒前
drew完成签到 ,获得积分10
51秒前
科研通AI5应助yiyi采纳,获得10
52秒前
寒冷的如之完成签到 ,获得积分10
54秒前
59秒前
哈桑士完成签到 ,获得积分10
1分钟前
阿姊完成签到 ,获得积分10
1分钟前
666星爷完成签到,获得积分10
1分钟前
小马完成签到 ,获得积分10
1分钟前
隐形白开水完成签到,获得积分10
1分钟前
1分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811753
求助须知:如何正确求助?哪些是违规求助? 3356021
关于积分的说明 10379166
捐赠科研通 3072972
什么是DOI,文献DOI怎么找? 1688168
邀请新用户注册赠送积分活动 811860
科研通“疑难数据库(出版商)”最低求助积分说明 766893