亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying correlation between the open-circuit voltage and the frontier orbital energies of non-fullerene organic solar cells based on interpretable machine-learning approaches

有机太阳能电池 开路电压 轨道能级差 光伏系统 富勒烯 可解释性 材料科学 生物系统 计算机科学 人工智能 物理 电压 分子 量子力学 工程类 电气工程 生物
作者
Min‐Hsuan Lee
出处
期刊:Solar Energy [Elsevier]
卷期号:234: 360-367 被引量:44
标识
DOI:10.1016/j.solener.2022.02.010
摘要

The open-circuit voltage (Voc) of the non-fullerene acceptors-based organic solar cells (NFAs-OSCs) under device operation conditions, as an essential photovoltaic parameter, is extensively studied for further power conversion efficiency (PCE) improvement. Generally, the Voc of binary bulk-heterojunction (BHJ) OSCs is roughly estimated by the energy level offset between the highest occupied molecular orbital of the donor (HOMO(D)) and the lowest unoccupied molecular orbital of the acceptor (LUMO(A)). Existing simulation and experimental approaches focus on studying the correlation between the Voc of PC61BM- and PC71BM-based OSCs with various donors. In solution-processed NFAs-OSCs, however, providing a numerical method for accurate estimates of Voc prediction is very difficult due to the extremely large pool of possible design donor-NFA combinations. It is also noted that using a conventional statistical model is challenging to accurately predict Voc for many different blends where the behavior between (|HOMO(D)|-|LUMO(A)|) offset and VOC is usually not a simple linear relationship. Herein, two tree-based ensemble machine-learning models of Random Forest and XGBoost are proposed to predict the Voc of NFAs-OSCs with a reasonable accuracy based on the intrinsic electronic parameters. In addition, the Shapley Additive Explanations (SHAP) analysis is applied not only for demonstrating the interpretability of the XGBoost model but also for visualizing the correlation between the Voc and the frontier orbital energies of NFAs-OSCs. This study demonstrates that the machine-learning approaches provide an empirical relation for accurately predicting the Voc of NFAs-OSCs, which might offer a strategy for efficiently designing new donor-NFA pairs to improve the Voc in devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
自觉的雨南完成签到,获得积分20
12秒前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得40
1分钟前
七小七完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助易槐采纳,获得10
1分钟前
fantasy发布了新的文献求助10
2分钟前
2分钟前
freyaaaaa应助122319采纳,获得50
2分钟前
浮游应助olekravchenko采纳,获得10
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
Able完成签到,获得积分10
3分钟前
阿里完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
阿里发布了新的文献求助20
5分钟前
蓝色的纪念完成签到,获得积分10
5分钟前
5分钟前
飞天大南瓜完成签到,获得积分10
5分钟前
科研通AI2S应助阿里采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
李爱国应助科研通管家采纳,获得10
5分钟前
天天快乐应助科研通管家采纳,获得10
5分钟前
义气幼珊完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
兮豫完成签到 ,获得积分10
5分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502936
求助须知:如何正确求助?哪些是违规求助? 4598615
关于积分的说明 14464678
捐赠科研通 4532229
什么是DOI,文献DOI怎么找? 2483868
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439766