SENIES: DNA Shape Enhanced Two-layer Deep Learning Predictor for the Identification of Enhancers and Their Strength.

增强子 稳健性(进化) 计算生物学 鉴定(生物学) DNA DNA测序 计算机科学 转录因子 生物 遗传学 人工智能 模式识别(心理学)
作者
Ye Li,Fanhui Kong,Hui Cui,Fan Wang,Chunquan Li,Jiquan Ma
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tcbb.2022.3142019
摘要

Identifying enhancers is a critical task in bioinformatics due to their primary role in regulating gene expression. For this reason, various computational algorithms devoted to enhancer identification have been put forward over the years. More features are extracted from the single DNA sequences to boost the performance. Nevertheless, DNA structural information is neglected, which is an essential factor affecting the binding preferences of transcription factors to regulatory elements like enhancers. Here, we propose SENIES, a DNA shape enhanced deep learning predictor, to identify enhancers and their strength. The predictor consists of two layers where the first layer is for enhancer and non-enhancer identification, and the second layer is for predicting the strength of enhancers. Apart from two common sequence-derived features (i.e., one-hot and k-mer), DNA shape is introduced to describe the 3D structures of DNA sequences. Performance comparison with state-of-the-art methods conducted on public datasets demonstrates the effectiveness and robustness of our predictor. The code implementation of SENIES is publicly available at https://github.com/hlju-liye/SENIES.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意草丛发布了新的文献求助10
刚刚
hileborn发布了新的文献求助10
刚刚
海海完成签到,获得积分10
1秒前
hailang820316完成签到,获得积分10
2秒前
3秒前
4秒前
7秒前
tttt完成签到,获得积分10
7秒前
我是老大应助FJ采纳,获得30
9秒前
今后应助WW采纳,获得10
9秒前
丑八怪发布了新的文献求助10
10秒前
12秒前
12秒前
龙樱发布了新的文献求助10
12秒前
13秒前
sunguoyi完成签到,获得积分10
13秒前
14秒前
14秒前
陈瑶完成签到,获得积分10
15秒前
15秒前
15秒前
轻松的苗条完成签到,获得积分10
16秒前
duanhahaha发布了新的文献求助10
16秒前
科目三应助Xiaque采纳,获得10
17秒前
orixero应助shine采纳,获得30
18秒前
18秒前
19秒前
19秒前
ylh发布了新的文献求助10
20秒前
龙樱完成签到,获得积分10
20秒前
22秒前
等待的忆枫应助豆子采纳,获得50
22秒前
22秒前
23秒前
916举报动漫大师求助涉嫌违规
25秒前
25秒前
顾海东完成签到,获得积分10
26秒前
所所应助U123456采纳,获得10
26秒前
大无畏发布了新的文献求助30
27秒前
调皮怜容完成签到 ,获得积分20
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791401
求助须知:如何正确求助?哪些是违规求助? 3335858
关于积分的说明 10277662
捐赠科研通 3052572
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803163
科研通“疑难数据库(出版商)”最低求助积分说明 761111