Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network

成对比较 单作 生物系统 生物量(生态学) 卷积(计算机科学) 人工神经网络 高光谱成像 遥感 环境科学 计算机科学 人工智能 模式识别(心理学) 数学 生物 生态学 地质学
作者
Pauliina Salmi,Marco Calderini,Salli Pääkkönen,Sami J. Taipale,Ilkka Pölönen
出处
期刊:Journal of Applied Phycology [Springer Nature]
卷期号:34 (3): 1565-1575 被引量:11
标识
DOI:10.1007/s10811-022-02735-w
摘要

Abstract Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the distinctive optical properties of different microalgae groups are targeted for monitoring. Since different microalgae can grow together, their spectral signals are mixed with ambient properties, making estimations of species biomasses a challenging task. In this study, we cultured five different microalgae and monitored their growth with a mobile spectral imager in three separate experiments. We trained and validated a one-dimensional convolution neural network by introducing absorbance spectra of the cultured microalgae and simulated pairwise mixtures of them. We then tested the model with samples of microalgae (monocultures and their pairwise mixtures) that were not part of the training or validation data. The convolution neural network classified microalgae accurately in the monocultures (test accuracy = 95%, SD = 4) and in the pairwise mixtures (test accuracy = 100%, SD = 0). Median prediction errors for biomasses were 17% (mean = 22%, SD = 18) for the monocultures and 17% (mean 24%, SD = 28) for the pairwise mixtures. As the spectral camera produced spatial information of the imaged target, we also demonstrated here the spatial distribution of microalgae biomass by applying the model across 5 × 5 pixel areas of the spectral images. The results of this study encourage the application of a one-dimensional convolution neural network to solve classification, regression, and distribution problems related to microalgae observation, simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Three发布了新的文献求助10
1秒前
Red-Rain发布了新的文献求助10
1秒前
夜神月发布了新的文献求助10
1秒前
英姑应助L~采纳,获得10
1秒前
horsam发布了新的文献求助10
2秒前
xing完成签到,获得积分10
2秒前
阿萨十大完成签到,获得积分10
2秒前
沫栀完成签到,获得积分10
2秒前
3秒前
wwwwwcy发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Pan发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
橘桉完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
天天快乐应助喵喵张采纳,获得10
8秒前
天天快乐应助植保匠人采纳,获得10
8秒前
feifei发布了新的文献求助10
9秒前
大模型应助沫栀采纳,获得10
10秒前
龙腾虎跃发布了新的文献求助10
11秒前
Serena完成签到 ,获得积分10
11秒前
12秒前
顾矜应助嘻哈哈采纳,获得10
12秒前
洒脱发布了新的文献求助10
12秒前
12秒前
L~发布了新的文献求助10
13秒前
lemon完成签到,获得积分10
14秒前
阳光大山发布了新的文献求助10
14秒前
15秒前
圈圈完成签到,获得积分10
15秒前
Vanff完成签到,获得积分10
17秒前
17秒前
18秒前
abjz发布了新的文献求助10
18秒前
XZD完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536205
求助须知:如何正确求助?哪些是违规求助? 4623940
关于积分的说明 14590018
捐赠科研通 4564400
什么是DOI,文献DOI怎么找? 2501719
邀请新用户注册赠送积分活动 1480512
关于科研通互助平台的介绍 1451794