亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network

成对比较 单作 生物系统 生物量(生态学) 卷积(计算机科学) 人工神经网络 高光谱成像 遥感 环境科学 计算机科学 人工智能 模式识别(心理学) 数学 生物 生态学 地质学
作者
Pauliina Salmi,Marco Calderini,Salli Pääkkönen,Sami J. Taipale,Ilkka Pölönen
出处
期刊:Journal of Applied Phycology [Springer Science+Business Media]
卷期号:34 (3): 1565-1575 被引量:11
标识
DOI:10.1007/s10811-022-02735-w
摘要

Abstract Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the distinctive optical properties of different microalgae groups are targeted for monitoring. Since different microalgae can grow together, their spectral signals are mixed with ambient properties, making estimations of species biomasses a challenging task. In this study, we cultured five different microalgae and monitored their growth with a mobile spectral imager in three separate experiments. We trained and validated a one-dimensional convolution neural network by introducing absorbance spectra of the cultured microalgae and simulated pairwise mixtures of them. We then tested the model with samples of microalgae (monocultures and their pairwise mixtures) that were not part of the training or validation data. The convolution neural network classified microalgae accurately in the monocultures (test accuracy = 95%, SD = 4) and in the pairwise mixtures (test accuracy = 100%, SD = 0). Median prediction errors for biomasses were 17% (mean = 22%, SD = 18) for the monocultures and 17% (mean 24%, SD = 28) for the pairwise mixtures. As the spectral camera produced spatial information of the imaged target, we also demonstrated here the spatial distribution of microalgae biomass by applying the model across 5 × 5 pixel areas of the spectral images. The results of this study encourage the application of a one-dimensional convolution neural network to solve classification, regression, and distribution problems related to microalgae observation, simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
Yoanna应助科研通管家采纳,获得10
2秒前
Yoanna应助科研通管家采纳,获得10
2秒前
13秒前
量子星尘发布了新的文献求助30
22秒前
大生蚝完成签到,获得积分10
54秒前
阿斯戳完成签到,获得积分20
1分钟前
1分钟前
斯文败类应助阿斯戳采纳,获得10
1分钟前
1分钟前
Okypete发布了新的文献求助10
1分钟前
脑洞疼应助闪闪翼采纳,获得10
1分钟前
彩虹儿完成签到,获得积分0
1分钟前
Yoanna应助科研通管家采纳,获得10
2分钟前
Yini应助ghost采纳,获得20
2分钟前
2分钟前
阿斯戳发布了新的文献求助10
2分钟前
慕青应助阿斯戳采纳,获得10
2分钟前
77完成签到 ,获得积分10
3分钟前
3分钟前
小燕子完成签到 ,获得积分10
3分钟前
勤恳依霜发布了新的文献求助10
4分钟前
老阎应助勤恳依霜采纳,获得30
4分钟前
共享精神应助勤恳依霜采纳,获得10
4分钟前
kmzzy完成签到,获得积分10
5分钟前
kuoping完成签到,获得积分0
5分钟前
5分钟前
闪闪翼发布了新的文献求助10
5分钟前
5分钟前
wwe完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
西安浴日光能赵炜完成签到,获得积分10
6分钟前
Yoanna应助科研通管家采纳,获得20
6分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957939
求助须知:如何正确求助?哪些是违规求助? 4219149
关于积分的说明 13133252
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190252
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625