Predicting the subclinical carotid atherosclerosis in overweight and obese patients using a machine learning model

医学 超重 亚临床感染 糖尿病 体质指数 随机森林 内科学 机器学习 人工智能 计算机科学 内分泌学
作者
D. V. Gavrilov,Т. Yu. Kuznetsova,М. A. Druzhilov,I. N Korsakov,A. V. Gusev
出处
期刊:Russian Journal of Cardiology [Silicea - Poligraf, LLC]
卷期号:27 (4): 4871-4871 被引量:1
标识
DOI:10.15829/29/1560-4071-2022-4871
摘要

Aim . To develop a model for predicting the subclinical carotid atherosclerosis (SCA) in order to refine cardiovascular risk (CVR) using machine learning methods in overweight and obese patients without hypertension, diabetes and/or cardiovascular disease (CVD). Material and methods . Anonymized database (DB) Webiomed (2.9 million patients) was used. There were following inclusion criteria: age ≥18 years, body mass index ≥25 kg/m 2 , availability of data on ultrasound of extracranial arteries. Patients with hypertension, diabetes and/or CVD were excluded from the analysis. Data on 5750 patients were selected, of which atherosclerotic plaques were detected in 385 people. The final data set contained information on 447 patients, 197 (44,1%) of which had SCA. Quantitative and categorical traits for model training were taken with 40% occupancy in the database. The number of final traits for machine learning was 28. When creating the model, 3 Random Forest algorithms, AdaBoostClassifier, KNeighborsClassifier and the Scikit-learn library were used. To improve the model performance, the fill missing function was used. The target parameters of the model were given a predictive ability (accuracy) of at least 75%, while the area under the ROC curve was at least 0,75. Results . The resulting dataset was divided into training and test parts in a ratio of 80:20. Depending on the applied algorithms, the learned model was characterized by a predictive ability of 75-97%, sensitivity of 77-92%, specificity of 80-98%, and area under the ROC-curve of 0,88-0,97. Taking into account the accuracy metrics, the best results were obtained for the model learned by the Random Forest algorithm (95%, 92%, 98% and 0,95, respectively). Conclusion . The developed model can help a physician make a decision to refer an overweight and obese patient without cardiovascular diseases for ultrasound of extracranial arteries, which contributes to a more accurate CVR stratification. The introduction of such risk stratification algorithms into practice will increase the accuracy and quality of CVR prediction and optimize the system of preventive measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天发布了新的文献求助10
刚刚
田様应助一年5篇采纳,获得10
1秒前
2秒前
piedpiper发布了新的文献求助10
3秒前
Dream完成签到,获得积分0
3秒前
虚拟的凝海完成签到,获得积分10
4秒前
小圭发布了新的文献求助10
5秒前
敬老院N号应助Ped采纳,获得30
7秒前
Owen应助五音采纳,获得10
10秒前
10秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
小葫芦完成签到 ,获得积分10
14秒前
克劳修斯完成签到 ,获得积分10
14秒前
现实的绿凝完成签到 ,获得积分10
14秒前
15秒前
单纯夏旋完成签到,获得积分10
15秒前
bastien发布了新的文献求助10
15秒前
renyun发布了新的文献求助10
17秒前
一年5篇发布了新的文献求助10
17秒前
18秒前
奶茶麻辣烫完成签到,获得积分10
18秒前
小马甲应助盛夏细闻采纳,获得10
19秒前
19秒前
无极微光应助大师现在采纳,获得20
19秒前
cici发布了新的文献求助10
20秒前
20秒前
堀江真夏完成签到 ,获得积分10
21秒前
充电宝应助从容的路灯采纳,获得10
23秒前
风笛完成签到 ,获得积分10
24秒前
FashionBoy应助learning小童鞋采纳,获得10
24秒前
Wangyiya完成签到,获得积分10
24秒前
wanci应助火星上乐驹采纳,获得10
24秒前
寒酥发布了新的文献求助10
25秒前
何雨亭发布了新的文献求助10
25秒前
hjygzv完成签到 ,获得积分10
26秒前
风趣白秋完成签到,获得积分10
26秒前
苏子墨完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777431
求助须知:如何正确求助?哪些是违规求助? 5633793
关于积分的说明 15445988
捐赠科研通 4909421
什么是DOI,文献DOI怎么找? 2641743
邀请新用户注册赠送积分活动 1589711
关于科研通互助平台的介绍 1544150