Simultaneous optimization of operational and financial decisions to closed-loop supply chain network under uncertainty

供应链网络 供应链 数学优化 计算机科学 现金流 利润(经济学) 线性规划 运筹学 供应链管理 经济 财务 微观经济学 数学 业务 营销
作者
Majid Ramezani,Ali Mohammad Kimiagari
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE Publishing]
卷期号:230 (10): 1910-1924 被引量:7
标识
DOI:10.1177/0954405415578723
摘要

This article integrates the company operations decisions (i.e. location, production, inventory, distribution, and transportation) and finance decisions (i.e. cash, accounts payable and receivable, debt, securities, payment delays, and discounts) in which the demands and return rate are uncertain, defined by a set of scenarios. The cash flow and budgeting model will be coupled with supply chain network design using a mixed integer linear programming formulation. The article evaluates two financial criteria, that is, the change in equity and the profit as objective functions. The results indicate that objective functions are partially interdependent, that is, they conflict in certain parts. This fact illustrates the inadequacy of treating process operations and finances in isolated environments and pursuing objective myopic performance indicators such as profit or cost. Due to the importance of the supply chain network design problem, a multi-objective robust optimization with the max–min version is extended to cope with the uncertainty. A solution approach integrating Benders’ decomposition method with the scenario relaxation algorithm is also proposed in this research. The improved algorithm has been applied to solve a number of numerical experiments. All results illustrate significant improvement in computation time of the improved algorithm over existing approaches. For a problem, the proposed algorithm shows a significant reduction in computational time compared with the Benders’ decomposition and scenario relaxation that shows the efficiency of the proposed solution method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_pnxjd8发布了新的文献求助10
刚刚
香蕉觅云应助优美丹雪采纳,获得10
1秒前
1秒前
端庄问芙完成签到,获得积分10
1秒前
乐正广山发布了新的文献求助10
2秒前
hbpu230701完成签到,获得积分0
3秒前
zz完成签到,获得积分10
3秒前
可爱的函函应助ATOM采纳,获得10
5秒前
金平卢仙发布了新的文献求助10
5秒前
一一应助Throb采纳,获得10
6秒前
口香糖探长完成签到 ,获得积分10
6秒前
7秒前
科研通AI5应助阿松采纳,获得10
8秒前
Akim应助乐正广山采纳,获得10
8秒前
8秒前
9秒前
YYL完成签到,获得积分10
10秒前
Q人士发布了新的文献求助10
12秒前
zy发布了新的文献求助10
14秒前
自信的坤发布了新的文献求助10
15秒前
15秒前
乐正广山完成签到,获得积分20
16秒前
纯情的菀发布了新的文献求助10
17秒前
19秒前
黄bb应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
20秒前
gh应助科研通管家采纳,获得10
20秒前
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得20
20秒前
田様应助科研通管家采纳,获得10
20秒前
osmanthus应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
21秒前
笨笨芯发布了新的文献求助10
21秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824301
求助须知:如何正确求助?哪些是违规求助? 3366627
关于积分的说明 10441518
捐赠科研通 3085832
什么是DOI,文献DOI怎么找? 1697607
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769640