Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data

分割 特质 茎叶展示 激光雷达 性状 图像分割 区域增长 预处理器 生物 人工智能 农学 计算机科学 遥感 表型 尺度空间分割 地理 基因 生物化学 程序设计语言
作者
Shichao Jin,Yanjun Su,Fangfang Wu,Shuxin Pang,Shang Gao,Tianyu Hu,Jin Liu,Qinghua Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (3): 1336-1346 被引量:124
标识
DOI:10.1109/tgrs.2018.2866056
摘要

Accurate and high throughput extraction of crop phenotypic traits, as a crucial step of molecular breeding, is of great importance for yield increasing. However, automatic stem-leaf segmentation as a prerequisite of many precise phenotypic trait extractions is still a big challenge. Current works focus on the study of the 2-D image-based segmentation, which are sensitive to illumination and occlusion. Light detection and ranging (LiDAR) can obtain accurate 3-D information with its active laser scanning and strong penetration ability, which breaks through phenotyping from 2-D to 3-D. However, few researches have addressed the problem of the LiDAR-based stem-leaf segmentation. In this paper, we proposed a median normalized-vector growth (MNVG) algorithm, which can segment stem and leaf with four steps, i.e., preprocessing, stem growth, leaf growth, and postprocessing. The MNVG method was tested by 30 maize samples with different heights, compactness, leaf numbers, and densities from three growing stages. Moreover, phenotypic traits at leaf, stem, and individual levels were extracted with the truly segmented instances. The mean accuracy of segmentation at point level in terms of the recall, precision, F-score, and overall accuracy were 0.92, 0.93, 0.92, and 0.93, respectively. The accuracy of phenotypic trait extraction in leaf, stem, and individual levels ranged from 0.81 to 0.95, 0.64 to 0.97, and 0.96 to 1, respectively. To our knowledge, this paper proposed the first LiDAR-based stem-leaf segmentation and phenotypic trait extraction method in agriculture field, which may contribute to the study of LiDAR-based plant phonemics and precise agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彼岸完成签到,获得积分10
刚刚
HH完成签到,获得积分10
刚刚
猪小猪发布了新的文献求助10
刚刚
1秒前
TOKO完成签到,获得积分10
1秒前
1秒前
小蜗爬爬发布了新的文献求助10
2秒前
wanci应助淡定的牛排采纳,获得10
2秒前
3秒前
LINGY发布了新的文献求助10
5秒前
琪琪发布了新的文献求助10
5秒前
5秒前
5秒前
infj完成签到,获得积分10
5秒前
codwest完成签到,获得积分10
5秒前
顾矜应助泽锦臻采纳,获得10
6秒前
7秒前
TSUNA发布了新的文献求助10
7秒前
SciGPT应助燕真采纳,获得10
7秒前
无花果应助难过盼海采纳,获得10
8秒前
小猴子应助abab采纳,获得10
8秒前
8秒前
breaddog发布了新的文献求助10
8秒前
charllar发布了新的文献求助10
8秒前
8秒前
yara完成签到 ,获得积分10
9秒前
cling12发布了新的文献求助10
9秒前
自然的岱周完成签到,获得积分10
10秒前
lenaimiao完成签到,获得积分10
10秒前
anubisi完成签到,获得积分10
12秒前
难过盼海发布了新的文献求助10
12秒前
Elan发布了新的文献求助10
14秒前
李健应助听雨采纳,获得10
14秒前
15秒前
zxl完成签到,获得积分10
16秒前
WB87应助完美不凡采纳,获得10
17秒前
吧唧完成签到,获得积分20
17秒前
英姑应助gww采纳,获得10
17秒前
隐形曼青应助nicesix采纳,获得10
17秒前
清新的囧发布了新的文献求助10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451764
求助须知:如何正确求助?哪些是违规求助? 4559610
关于积分的说明 14273963
捐赠科研通 4483541
什么是DOI,文献DOI怎么找? 2455561
邀请新用户注册赠送积分活动 1446425
关于科研通互助平台的介绍 1422323