High-Resolution PolSAR Image Interpretation Based on Human Image Cognition Mechanism

计算机科学 口译(哲学) 人工智能 机制(生物学) 图像(数学) 认知 计算机视觉 分辨率(逻辑) 图像分辨率 模式识别(心理学) 神经科学 心理学 认识论 哲学 程序设计语言
作者
Bin Zou,Xiaofang Xu,Lamei Zhang,Chenxi Song
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:8
标识
DOI:10.1109/jstars.2018.2873417
摘要

Since the all-day and all-weather working characteristics, polarimetric synthetic aperture radar (PolSAR) has been widely used in many application for earth observation. PolSAR system can acquire targets scattering information under different polarization patterns and obtain detailed information, such as physical characteristics, spatial distribution and direction of the targets, etc. However, in high-resolution PolSAR images, the scattering characteristics of targets are very sophisticated, and different parts of the same target may present different scattering mechanisms. As a result, traditional interpretation technologies are sometimes not applicable in a high-resolution PolSAR scenario. Recently, many artificial intelligence algorithms that simulate the scheme of human cognition have been developed and they have great significance for efficient, intelligent, and accurate images interpretation. In this paper, based on human cognition theory and taking into account the characteristics of targets in PolSAR images, an algorithm for the interpretation of various targets in high-resolution PolSAR images is presented. In this paper, a "perception-reasoning-decision" cognition model is built following the cognition process of professional PolSAR image interpreters. In addition, with the help of theories such as multilevel image segmentation, fuzzy logic, neural network, and the context semantic characteristics, the mathematical model is established and implemented. The proposed method is performed on several sets of PolSAR images obtained under different imaging conditions and is validated by comparing with existing classification methods. The results show that the proposed method can effectively improve the identification of targets from PolSAR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助nn采纳,获得10
1秒前
crazy发布了新的文献求助10
1秒前
科研通AI2S应助刘旭采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
有魅力的臻完成签到,获得积分10
2秒前
cc发布了新的文献求助10
4秒前
田様应助阿才不是阿财采纳,获得10
4秒前
大模型应助单薄的醉蓝采纳,获得10
5秒前
5秒前
7秒前
8秒前
刘威完成签到,获得积分10
8秒前
科研通AI2S应助邢遇采纳,获得10
10秒前
研友_r8YKvn完成签到,获得积分10
10秒前
跳跃的语柔完成签到 ,获得积分10
11秒前
12秒前
么么蛋发布了新的文献求助10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
他们叫我张国荣完成签到,获得积分10
15秒前
活力的兔子关注了科研通微信公众号
16秒前
16秒前
云遮月应助陈文娜采纳,获得10
17秒前
Shu舒完成签到,获得积分10
17秒前
香菜大王发布了新的文献求助10
17秒前
17秒前
19秒前
Orange应助双双采纳,获得10
19秒前
19秒前
cc123完成签到,获得积分10
20秒前
20秒前
沉静代芹发布了新的文献求助10
21秒前
21秒前
nancy发布了新的文献求助10
21秒前
邢遇发布了新的文献求助10
22秒前
Orange应助111采纳,获得10
22秒前
QG完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Bacillus subtilis and Other Gram‐Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4853299
求助须知:如何正确求助?哪些是违规求助? 4151125
关于积分的说明 12860787
捐赠科研通 3899850
什么是DOI,文献DOI怎么找? 2143054
邀请新用户注册赠送积分活动 1162870
关于科研通互助平台的介绍 1063212